欢迎光临~科士达UPS_科士达UPS官网_电源精密空调官网 4007655808
语言选择: 中文版 ∷  英文版

公司新闻

数据中心机房冷却方式有几种?科士达精密空调制冷方式

科士达精密空调保持最佳工作温度对许多数据中心来说是一个挑战,当数据中心没有得到正确冷却时,IT设备可能会过热,过热可能会降低服务器性能或损坏硬件,因此,管理空气流量对性能,成本和能源效率有重大影响。企业都非常重视数据中心冷却失效后的温升问题,保障数据中心的在线运营是一项很大的成本支出,并且绝不允许无计划的停电,更不允许出现单点故障,下面看看数据中心机房几种冷却方式,以及冷却失效对机房温升有多大影响!


科士达精密空调为维持恒定的室内温度需要全年为之降温,由此带来了巨额的耗电量和电费,在节能减排和降低运营成本的双重压力,迫使人们不断地研发新的节能技术和产品,通过提高运行温度,利用环境空气和针对性的空气进行冷却,而不再是将整个数据中心降到不必要的低温,最终实现节省能源的目的。

数据中心机房几种冷却方式

1、免费冷却

更高的运行温度通常也会让免费冷却系统一起受益。在ASHRAE 90.1-2010指导文件中,免费冷却几乎是一项节约能源的强制要求,必将被普遍运用。节能改造的资本投入会部分地抵消运营成本节约的好处。但在改造或升级的同时实现免费冷却也是技术和投资上的挑战。预计未来两年内将出现新的标准,使免费冷却更具可行性。靠近水源的免费冷却将可能会更具优势,但我们将会看到更多类似日本Kyoto Wheel的空气冷却案例。最终,数据中心运营商将能够在超出以前预计的更多气候条件下采用免费冷却措施,这部分是因为更高运行温度的贡献。


2、密封冷却

密封措施也无法解决由于错误的冷却规划、空气流动不充分或冷却能力引起的过热问题。最新的国家防火协会商业标准(NFPA-75)可能会使密封冷却的方案更难实现。对喷淋和(或)气体灭火系统的改造将大大增加成本。除了要尽力避免错误的实施外,日常优化也很重要:在未使用的机架空间一定要安装盲板,架空地板上的孔洞要及时封堵,地板下面影响通风的线缆也要做好清理。

3、后门冷却器

被人们接受的程度也非常高,部分也是因为水冷方式重新受到关注。如果将巨大的机房空调系统取消,改用贴近设备的新型冷却方式的话,相信数据中心行业会运行得比现在更好。教育背景和希望与众不同的个人意愿或许会促生新案例,但成本和电源可用性的矛盾将决定最终结果。

4、蒸发或绝热冷却

虽然使用蒸发方式制冷的科学原理简单,并正在逐渐流行,但它对于大多数数据中心操作人员而言仍然显得新奇。绝热冷却通过降低封闭环境中的某种物质运行的压力来实现冷却,让这些物质沸腾如同岩浆涌上火山表面,同时用风带走山峰上的高温。绝热冷却在温暖、干燥的气候中仍然有效,这大大拓宽了一年中能够“免费冷却”的有效期。其主要的缺点是用水量有些多,但在同等冷却量的情况下,它所需的冷却水仍然比标准冷却塔要少很多。


5、紧耦合或热源冷却

紧耦合冷却方式通过贴近热源来实现更有效的运作。这不算什么新东西——问问老的大型机操作员或任何笔记本电脑设计人员就知道了。虽然紧耦合冷却在数据中心里面还是“主流”,但是更新的方法在满足能源效率的需求方面往往做得更好,并获取更多关注。它的工作方式很简单:消耗能源来将大量的空气吹入地板下的空间或者导风管,然后又将这些空气拉回至空调。

更有前途的技术包括浸入式冷却:将服务器整个浸泡在矿物油里,以便使用最少的能耗获得极高的冷却效率。但是技术人员需要对内外布满了石油的服务器进行处理时,心里会怎么想?显然这种冷却方式并不是适合所有场景。

6、更高的运行温度

美国供暖、制冷和空调工程师协会(ASHRAE)在2008年就第一次发表了关于较高温度数据中心的建议,但并未引起注意。服务器不需要冷藏。即使入口空气温度达到华氏75到80°F(摄氏25至27°C),这些设备仍然能维持良好运作。服务器制造商实际上已经扩展了产品的运行温度范围,而且旧设备其实也和新设备一样能够在扩展的温度区间内运行。提高运行温度可以大幅度节省能源消耗,但人们首先需要认可这种处理方式,然后同意让热通道变得更热——想像一下100°F (38°C)的温度怎样?这会刺激后门冷却器的应用和普及。


7、烟囱式机柜和天花板风道

使用天花板上方的空间形成的风道将空气传输给机房空调系统,确保回风以最高的温度返回空调冷却盘管,可以显著增加精密空调系统的冷却能力。结合了吊顶风道和热通道措施的最终设备形式就是烟囱式机柜,可以获得最大的冷却效率。来自服务器群的高温废气从机柜后部的烟囱排出,然后直接通过吊顶天花板上方的风道回到空调设备中。整个过程中热空气和冷空气保持分离,所以可以保持很高的能效比。

虽然效果明显,但是烟囱式机柜并没有获得大力推广或被广泛接受。这可能是因为全密封式的设计灵活性更好,可以使用更多的机柜实现相同的效果。然而,烟囱式机柜可以让整个房间维持冷通道温度,让工作环境变得更加舒适。

直接、间接自然冷却

数据中心利用自然冷源进行制冷的解决方案主要有间接自然冷却和直接自然冷却两种方式。机房空调一年四季都需要制冷,过渡季节室外温度低于室内温度时,自然界存在着丰富的冷源,如何利用大自然的冷源进行冷却是机房空调节能减排的重点问题。


1、直接自然冷却

(1)全新风自然冷却

直接引入室外新风、配合冷热通道隔离实现机房制冷,针对不同地区的气候条件,新风进入机房前需要经过过滤、加湿、除湿、送回风混合等预处理。

(2)鸡舍式热压自然循环风冷却

不需要机械帮助,直接靠服务器散发的热能产生动力自然散热。把服务器散发的热量收集起来,利用空气膨胀后产生向上的动力,通过足够高的烟囱让热空气往上升带动空气流动,完成散热循环。

(3)转轮式热交换自然冷却

利用转轮内填料的储能功能,让转轮在两个封闭的风道内缓慢旋转,被室外空气冷却的填料冷却室内空气。


2、间接自然冷却

(1)带自然冷却节能模块的风冷式冷水机组

春秋过渡季节和晚上,当环境温度达到比冷冻水回水温度低两度或以上时,开启自然冷却模块制冷,无压缩机功耗,自然冷却不够的部分,再由压缩制冷接力达到需求冷量。随着室外环境温度降低,自然冷却部分占的比例越来越大,直至达到100%,完全自然冷却制冷,无压缩机功耗。

(2)水侧板换节能装置

由大型冷却塔、水冷型冷水机组、板式换热器组成,夏季采用冷水机组和冷却塔制冷,冬季采用板换将有杂质的冷却水转变为干净的冷冻水送入空调室内机,冷水机组停机。

(3)双盘管乙二醇自然冷却

在直膨蒸发器盘管上,再并一组冷冻水经济盘管,通过两套两通阀来调节水是经过板式热交换器的冷凝器还是经过冷冻水盘管。室外干冷器夏季提供冷却水给板换用于直膨制冷,冬季提供冷冻水给经济盘管用于冷冻水制冷。

(4)氟泵自然冷却

在夏季,制冷压缩机运行;当室外温度低于设定点时,自动切换为氟泵节能系统运行,停止压缩机运行,保证全年机房空调安全可靠运行。氟泵不高于压缩机运行功耗的10%,相对于水系统空调,无需添加防冻剂,无水患忧虑。

(5)辅助蒸发自然冷却

科士达精密空调室外机雾化水喷淋系统将软化水进行增压后通过高速直流马达进行雾化处理,将每一滴水雾化成原水滴的体积1/500左右直接喷洒在冷凝器翅片上实现辅助蒸发,使得冷凝器的整体散热量增大、功耗降低。这种通过室外机雾化喷淋延长自然冷却运行时间的方式,在干燥气候下最为有效,如中国西部和东北部。

套路一:结露滴水

造成科士达精密空调系统在调试和运行中结露滴水的原因很多,归纳起来主要有:管道安装和保温问题,管道与管件、管道与设备之间连接不严密。造成漏水主要原因有管道安装没有严格遵守操作规程施工,管道、管件材料质量低劣,进场时没有进行认真检查,系统没有严格按规范进行水压试验,因冷凝水管路太长,在安装时与吊顶碰撞或坡度难保证甚至冷凝水管倒坡造成滴水现象,空调机组冷凝水管因没有设水封(负压处)而机组空调冷凝水无法排除,冷凝水管施工安装出现问题的处理办法是尽可能将冷凝水就近排放,以避免冷凝水管倒坡积水或与吊项“打架”现象;柜机冷凝水管应按机内的负压大小设水封,以使冷凝水排放畅通。

针对上述科士达精密空调问题主要的解决办法:

(1)穿墙部位冷冻管加设保温保护套管,确保穿墙部位保温层的连续性和严密性。

(2)加强吊顶封板前,对风机盘管滴水盘等处的杂物清理检查。四是加强对设备滴水盘的保护,特别是吊项封板前的检查。

(3)加强保温材料进场检查,要加强施工前技术交底和施工中的检查,严禁用大保温套管套小管道,加大对弯头、阀门、法兰及设备接口处等细部的保温质量控制力度,确保保温层与管道外壁结合紧密。

套路二:科士达精密空调水系统水循环

水系统中央空调施工中最关键的环节,施工出现问题会直接影响系统正常运行,中央空调冷冻水系统最常见的问题是冷冻水系统管道循环不畅,造成管道循环不良的原因之:

(1)科士达精密空调水系统管道清洗不干净,直接造成空调水系统堵塞

处理方法就是加强施工前管理,合理安排管线标高和坡度,尽量避免出现气囊现象,同时在不可避免出现气囊部位设置排气阀并将排气管出口接至利于系统排气处。

(2)管道因各专业管线交叉,施工中没有协调处理好,造成管网出现许多气囊,影响管网循环

在施工过程中要做好几方面的预防工作:首先是在焊接钢管安装前必须用机械或人工清除污垢和锈斑,当管内壁清理干净后,将管口封闭待装。管道施工过程中未封闭的管口要做临时封堵,以免污物进入,管道连接时要及时清理焊渣和麻丝等杂物。

管网最低处安装一个比较大的排污阀,如果排污阀太小,排污效果差,则清洗次数要多;如果排污口不在最低处,则排污不彻底。管网安装中应适当增设临时过滤器和旁通冲洗阀门,在连接设备之前,结合通水试压进行分段清洗设备。清洗工作完成以后,还要进行水系统循环试运行,其目的是将管网中的污物冲洗集中到过滤器,然后再拆洗过滤器清除污物。


套路三:管线、设备的定位和标高交叉

现在机房科士达精密空调工程设计图纸基本上采用CAD绘制,安装专业设计虽然在绘制施工图前就对管道和设备的标高进行了初步规划,但在施工图出图前往往没有进行详细的校对,经常造成各专业施工图中管线标高、定位交叉严重,给工程质量管理、协调造成很大困难。

吊顶高度很大程度上取决于风管截面高度方向的尺寸,风管走线不宜太长,否则施工难度大,其他管线也难布置。如某商场最大的风管截面积为2400mm×500mm,风管截面积大,机房必然大,机房大则噪声也大,回风组织困难。假如风管走线短,选择风机功率就可以小些,这时可选用卧式机组挂装,机房设置就比较灵活。另外,吊顶内的风管敷设还应做到:

(1)建筑专业设计应对其它专业走管要求全面了解,以便合理确定层高和布置管线:

(2)尽量根据风量变化改变管道截面尺寸,以便于装潢,可局部提高吊顶高度;

(3)送回风管应设在同一平面内。当布置回风管困难时,可利用吊顶内空间代替回风管。

(4)应对建筑物内各种管线进行管线工程综合设计,复杂的建筑应提供管线综合大样图。

综上所述,建筑吊顶高度的提高有赖于多方面的努力,针对以上问题,应进行管路综合设计,所谓管线综合设计就是将建筑内各项管线工程统一安排,以便于发现各项管线工程设计上存在的问题,并会同有关单位商讨解决,使各项管线在建筑空间上占有合理的位置,为管线工程的施工、运行使用、维修管理创造条件,根据管道性能和用途的不同,建筑物中的管道大致可分为以下几类:

(1)中水管道:包括中水收集及中水供应;

(2)燃气管道:有气体燃料、液体燃料之分;

(3)给水管道:包括生活给水、消防给水、生产用水等;

(4)排水管道:包括生活污水、生活废水、消防排水、雨水、其他排水等;

(5)热力管道:包括采暖、热水供应及空调空气处理设备中所需的蒸汽或热水;

(6)空气管道:包括通风工程、空调系统中的各类风管,以及某些生产设备所需的压缩空气管:

(7)供配电线路或电缆:包括动力配电、照明配电、弱电系统配电等,其中弱电部分包括共用电视天线、通信、广播及火灾报警系统等。

因此,合理布置各专业管线,提高建筑物有效使用空间,需要有关专业设计人员密切配合及互相协调。在建设单位统一协调下,各施工单位、装潢单位最后统一把关,以满足各自的工艺要求,才能使建筑物达到经济合理、卫生舒适的要求,并在确装饰效果的前提下提高吊项高度。

套路四:科士达精密空调噪声超标

科士达精密空调末端设备运转噪声超标,是暖通空调工程中经常碰到的设备噪声问题。由于风机盘管技术比较成熟,国内许多厂家的风机盘管产品噪声指标都能达标,而大风量空调机组的情况却不尽如人意,往往噪声实测值比厂家提供的产品样本参数高出不少,设计中要标出对设备噪声参数的要求,对设计时采用大风量空调机组应考虑隔声措施。当空调设备进场时应及时开箱检查,大风量空调机组未安装前最好进行通电试运行,发现噪声超标应及时更换、退货或修改完善消声措施,避免工程进入调试阶段才发现空调机组噪声超标而造成返工情况。此外合理施工可起到明显的降低噪声作用。

(1)水系统安装

水管安装要严格执行国家规范,冷冻水主干管及冷却水管吊架要采用弹簧减振吊架,而且吊架不能固定在楼板上,应尽量固定在梁上,或在梁与梁之间架设槽钢横梁固定。水管穿过楼板或过墙必须采用套管,且套管与水管之间要用阻燃材料填封。

(2)设备安装

新风机、科士达精密空调机安装采用弹簧阻尼减振器,风机与风管连接采用软连接,新风机组与水管采用软接头连接,风机盘管采用保弹簧吊钩,风机盘管与水管采用软管连接,对空调机房进行吸音处理,比如在空调机房内采用隔声材料做成围护结构,以防止设备噪声外传,或在机房内贴吸声材料,采用凹凸型吸声板作为机房墙面或吊顶板,以增强吸声效果,机房应尽量减少设置门窗,且设置门窗应采用吸声门窗或吸声百叶窗,尽量减少设备噪声外传。

(3)风系统安装

风管制作安装要严格按照国家规范进行施工,在风机进出口安装阻抗消声器,新风进口处采用消声百叶,风管适当部位设置消声器,风管弯头部位设置消声弯头,空调和新风消声器的外部采用优质保温材料保温,与静压箱一样其内贴优质吸音材料,由于送回风管均采用低风速、大风量以降低噪声,风管截面积比较大,如果风管安装强度及其整体刚度不够,就会产生摩擦及振动噪声,建议风管吊架尽可能采用橡胶减振垫,确保风管不产生振动噪声。


套路五:科士达精密空调安装出问题

科士达精密空调安装过程中,涉及到多个专业之间的配合,往往由于各专业之间缺乏良好沟通给施工造成诸多不便,甚至影响工期,主要有以下几个方面问题:

(1)对土建未提出风道具体施工要求。如对通风竖井砌砖时应该用水泥砂浆抹面,保证风道内壁光滑不漏风。

(2)未将通风管道在混凝土墙、楼板等处预留的孔洞尺寸提供给土建专业,并落实到土建图纸上,造成施工时现凿洞,增加了不必要的开支,甚至影响了建筑结构强度,特别是大型设备的吊装孔、人防工程的通风管、测压管等预留孔洞预埋工作若做不好将难以处理。

(3)对机房排水未提出要求,结果出现机房无排水设施。冷冻机房应设排水沟和就近设置集水坑,集水坑内设置带水位控制器的排水泵。特别是地下室设备较多,冷水机组、过滤器等都要定时冲洗,万一系统跑水且机房内无排水设施,就会发生设备被淹事故。


科士达精密空调控制系统在数据中心节能改造中的应用

2.1 医院数据中心对精密空调的要求

医院数据中心是医疗信息化的核心基础,医院数据中心的稳定工作是医疗工作顺畅的前提和先决条件,其中电力系统的保障和温湿度的保障是数据中心稳定工作的重中之重,所以一般医院数据机房的精密空调选型基本为双压缩机以及2台空调“一用一备”的方式,但无论是双压缩机还是“一用一备”的精密空调配置,在实际应用中,很少有双压缩机同时工作或“一用一备”两台精密空调同时开机的情况,所以就节减排而言并未增加机房实际的电量消耗。

任何系统或设备的增加不应降低原系统的稳定性,尤其是控制系统的加入,科士达精密空调控制系统的控制策略是整个控制系统的核心,必须始终遵循涡旋压缩机的性能特点,通过检测调速对压缩机的泄露损耗、动涡盘摩擦损耗和气体流动损失的模块化节点参数检测,分析结果为涡旋压缩机的多变效率随转速而变化,转速对多变效率、摩擦损耗影响极小,尤其是流动损失占涡盘总功耗不到万分之一。同时压缩机长期运行在变工况的条件下,保证其在较宽的转速范围使机器正常运转并具有较高的效率。所以在一定程度上对空调因散热问题导致的故障率高和单台空调冷量过剩,都有较大的缓解作用。并且配置精密空调节能控制系统后,对压缩机进行软启动和运行的无级调节冷量,可以有效减少压缩机的启停次数,延长压缩机寿命,根据实际运行数据动态调整精密空调系统运行模式或工艺参数,逐步逼近系统最优运行点。

2.2 控制系统工作原理

机房科士达精密空调本身是一个完整的制冷系统,各设备及介质间的相互关联,相互影响关系,比较复杂。根据制冷系统的压焓图分析,空调蒸发温度升高、冷凝温度下降,可以有效提高空调的效率。科士达精密空调控制系统正是基于这一规律,通过技术手段,有效的提高了空调的蒸发温度、降低了冷凝温度,从而实现提高空调效率,降低空调能耗的目的[2]。

科士达精密空调控制系统需要安装在机房空调边,对空调本身改动较小,主要是在压缩机与室内风机的电气主回路上增加一套空调节能控制系统。根据空调室内风机类型,若为AC风机(交流风机,风机一般是独立工作,不受压缩机控制)时,需要把压缩机与室内风机的进线电源拆除,接进空调节能控制系统的动力进线,空调节能控制系统的动力出线接回空调压缩机与室内风机的供电回路;若为EC风机(Embedded Controller,嵌入式控制器),仅需把压缩机的进线电源拆除,接入空调节能控制系统的动力进线,空调节能控制系统的动力出线接回空调压缩机的供电回路;同时,把监测空调运行状态的信号线接入空调节能控制系统,完成空调的改造实施,空调节能控制系统不更改空调原控制系统的接线、控制方式,以保证系统增加后不影响原精密空调系统的内部结构。

科士达精密空调节能控制系统监测到温湿度传感器温度值(温湿度传感器主要检测空调的回风温度,一般可通过读取动力环境检测系统采集的数据或者在控制系统新增温湿度传感器实现)和空调本身的设定温度值接近时,说明空调工作处于热负荷较低的状态。此时通过降低压缩机的运行转速,使单位时间内通过冷凝器和蒸发器的冷媒流量下降。从而降低冷凝温度和提高蒸发温度,稳定和提升送风的温度精度,达到提升制冷效率、降低压缩机功耗的效果,最终达到绿色节能的目的。

科士达精密空调控制系统根据机房空调回风的实际运行温度,判断机房冷量的实时需求,控制科士达精密空调降低压缩机转速。根据压缩机功率、转速公式:

P=Pm(np/nm)3

得知,压缩机功率与转速成正比关系。同时在负载一定的情况下,频率与转速成正比,与功率为3倍的关系。频率越高,转速就越高,功率也提高。相反频率降低时,压缩机转速降低,而功率却为原功率的1/3。可见科士达精密空调控制系统具有较高的节能效率。

科士达精密空调控制系统后端的物流连接区域内应配置选择开关,选择开关由控制系统独立控制或者手动控制。当选择开关切换至原模式位置时,系统切换至原模式运行,此时科士达精密空调控制系统停止工作,由原精密空调独立工作,空调的所有控制由空调自身控制器完成。当选择开关切换至节能模式位置时,系统切换至节能模式运行,此时节能柜根据空调的回风温度,自动调节空调的冷量输出。当精密空调控制系统发生故障时,选择开关将自动切换至原模式运行时。

2.3 科士达精密空调节能效果分析

科士达精密空调控制系统完成节能改造后,显性的变化主要包括以下三方面:

(1)科士达精密空调耗电功率明显下降。改造前,空调制冷量与机房IT设备热负载的不平衡,导致空调压缩机频繁停机,由于机房温度波动幅度大,也会导致空调的电加热频繁启动,引起较大的能耗浪费;改造后,可以有效减少压缩机停机及电加热的启动次数,能耗得到有效利用,空调效率得到提高,耗电量明显下降,平均每小时可降低3.5千瓦的功耗。(2)机房温度更稳定。因制冷空调制冷量大于机房设备IT负载,空调将通过停止压缩机的方式,必然导致机房温度波动,正常为设定点的±3℃;通过控制系统的介入控制,制冷量根据实际热负载自动调节,机房温度更稳定,波动幅度为±0.5℃,实现冷热平衡。(3)中心机房更加绿色环保。经估算,按照我院北京西路院区中心机房UPS16%的负载量,完成科士达精密空调控制系统改造后,PUE值可从1.79降低至约1.65。我院中心机房精密空调平均每小时可降低3.5千瓦的功耗,每年大约可为我院节约2.7万元的电费。

3 结束语

使用科士达精密空调控制系统既能使中心机房的温度更加稳定,也达到了节能环保的目的,还產生了一定的经济效应,相信随着中心机房内新设备的陆续启用,控制系统的作用会更加明显。目前国内在中心机房内使用精密空调控制系统的案例还不多,综合以上的分析我认为精密空调控制系统是值得大力推广的。

随着绿色节能数据中心概念的深入人心,建设具有节能环保特色的数据中心已经贯穿于数据中心项目的全生命周期,针对数据中心能耗大户的制冷系统,已经普遍应用的如改进送风方式、冷热通道布局、冷热通道隔离、室外自然冷源引入、雨水应用等技术已经发挥很大的作用,相信科士达精密空调智能控制系统必然会为智慧医院、绿色医院的建设添砖加瓦,为医疗信息化的物理基础提供有力保障。

The increase of any system or equipment shall not reduce the stability of the original system, especially the addition of the control system. The control strategy of kostar precision air conditioning control system is the core of the whole control system. It must always follow the performance characteristics of the scroll compressor, and check the modular node parameters of the leakage loss, the friction loss and the gas flow loss of the compressor through the detection of speed regulation The results show that the variable efficiency of the scroll compressor changes with the rotating speed, and the rotating speed has little effect on the variable efficiency and friction loss, especially the flow loss accounts for less than one tenth of the total power consumption of the scroll. At the same time, under the condition of long-term operation of the compressor under variable working conditions, ensure that it can make the machine run normally and have high efficiency in a wide speed range. Therefore, to a certain extent, it can alleviate the high failure rate and the excess cooling capacity of a single air conditioner caused by heat dissipation. After the precise air-conditioning energy-saving control system is configured, the compressor can be soft started and operated with stepless regulation of cooling capacity, which can effectively reduce the number of starts and stops of the compressor, extend the compressor life, dynamically adjust the operation mode or process parameters of the precise air-conditioning system according to the actual operation data, and gradually approach the optimal operation point of the system.



2.2 working principle of control system



Kestar precision air conditioner is a complete refrigeration system. The relationship between equipment and medium is complex. According to the analysis of the pressure enthalpy diagram of the refrigeration system, the efficiency of the air conditioner can be effectively improved by increasing the evaporation temperature and decreasing the condensation temperature of the air conditioner. Based on this law, kostar precision air conditioning control system effectively improves the evaporation temperature and reduces the condensation temperature of the air conditioning through technical means, so as to achieve the purpose of improving the air conditioning efficiency and reducing the energy consumption of the air conditioning [2].



Kestar precision air conditioning control system needs to be installed beside the air conditioner in the machine room, with little change to the air conditioner itself, mainly adding a set of air conditioning energy-saving control system on the main electrical circuit of the compressor and indoor fan. According to the type of fan in the air conditioning room, if it is an AC fan (AC fan, the fan generally works independently and is not controlled by the compressor), the incoming power supply of the compressor and the indoor fan shall be removed, connected to the power incoming line of the air conditioning energy saving control system, and the power outgoing line of the air conditioning energy saving control system shall be connected to the power supply circuit of the air conditioning compressor and the indoor fan; if it is an EC fan (embedded Controller, embedded controller). It only needs to remove the power supply of the compressor's incoming line, connect it to the power incoming line of the air-conditioning energy-saving control system, and connect the power outgoing line of the air-conditioning energy-saving control system to the power supply circuit of the air-conditioning compressor; at the same time, connect the signal line monitoring the air-conditioning operation state to the air-conditioning energy-saving control system, and complete the implementation of the air-conditioning transformation. The air-conditioning energy-saving control system will not be changed The wiring and control mode of the original control system of the air conditioner to ensure that the internal structure of the original precision air conditioning system will not be affected after the system is added.



When kestar precision air conditioning energy-saving control system monitors the temperature value of temperature and humidity sensor (the temperature and humidity sensor mainly detects the return air temperature of air conditioning, which can be realized by reading the data collected by the power environment detection system or adding a temperature and humidity sensor in the control system) and the set temperature value of air conditioning itself are close, it indicates that the air conditioning is in a state of low heat load. At this time, by reducing the running speed of the compressor, the refrigerant flow through the condenser and evaporator will decrease in unit time. So as to reduce the condensation temperature and improve the evaporation temperature, stabilize and improve the temperature accuracy of the air supply, improve the refrigeration efficiency and reduce the power consumption of the compressor, and finally achieve the purpose of green energy saving.



According to the actual operating temperature of the return air of the air conditioner in the machine room, kostar precision air conditioning control system judges the real-time demand of the cooling capacity in the machine room, and controls kostar precision air conditioning to reduce the compressor speed. According to the formula of compressor power and speed:



P=Pm(np/nm)3



It is known that the compressor power is directly proportional to the rotating speed. At the same time, when the load is fixed, the frequency is proportional to the rotation speed and the power is 3 times. The higher the frequency, the higher the speed and the higher the power. On the contrary, when the frequency is reduced, the compressor speed is reduced, while the power is 1 / 3 of the original power. It can be seen that kestar precision air conditioning control system has high energy saving efficiency.



In the logistics connection area at the back end of kestar precision air conditioning control system, a selection switch shall be equipped, which shall be independently controlled or manually controlled by the control system. When the selection switch is switched to the original mode position, the system is switched to the original mode for operation. At this time, the control system of kestar precision air conditioner stops working, and the original precision air conditioner works independently. All the control of the air conditioner is completed by the air conditioner's own controller. When the selection switch is switched to the energy-saving mode position, the system switches to the energy-saving mode for operation. At this time, the energy-saving cabinet automatically adjusts the cooling output of the air conditioner according to the return air temperature of the air conditioner. When the precision air conditioning control system fails, the selection switch will automatically switch to the original mode for operation.



2.3 energy saving effect analysis of kestar precision air conditioner



After the energy-saving transformation of kestar precision air conditioning control system, the dominant changes mainly include the following three aspects:



(1) the power consumption of kostar precision air conditioner decreased significantly. Before the transformation, the imbalance between the cooling capacity of the air conditioner and the thermal load of the IT equipment in the machine room leads to frequent shutdown of the air conditioner compressor. Due to the large fluctuation of the temperature in the machine room, the frequent startup of the electric heating of the air conditioner will also lead to a large waste of energy consumption. After the transformation, the number of compressor shutdown and the startup of the electric heating can be effectively reduced, the energy consumption can be effectively utilized, and the efficiency of the air conditioner can be achieved

联系我们

联系人:王培

手机:15210159464

电话:400-7655-808

邮箱:15210159464@126.com

地址: 北京市大兴区旧桥路25号院3号楼2层205