科士达机房精密空调位置与配置以多种方式影响数据中心的冷却效果,科士达机房精密空调室内机与室外机安装高度差也将会适当影响数据中心高效的运行。下面将简单介绍一下室内机与室外机高度差问题。
如果安装容许的话,高度差是越小越好。但在实际应用中,由于安装位置受限,室内外机很难安装在同一楼层,不可避免存在一定的高度差。
一般来说,对于科士达机房精密空调,如果外机在高处的话,比较合适的是20米内;外机在下面,比较合适是5米内。在这个范围内,机房空调受影响较小,压缩机的吸排气能力下降不大,机组的制冷量衰减也不大。
另外,通过加装单向阀、设置回油弯和反向弯,采用气管倾斜、液管倾斜和负高差管路增压等方法,可以加大这种高差。不同厂家,采用的技术不一样,最大容许高差有所不同。
实际中,高差越大,管阻越大,压缩机吸排气会下降,制冷量下降,也不利于冷冻油循环,压缩机的寿命会降低,如果安装措施不当,系统将难以运行。我们在实际安装中,要想办法减少这种高差。
总之,科士达机房精密空调安装过程中合理选择室内机与室外机的高度差,有利于机房空调的运行,从而使得整个数据中心正常运作。
在整个空调制冷系统循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中的低压力,冷凝器中的高压力的作用,是整个系统的心脏;节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的;冷凝器是输出热量的设备,从蒸发器中吸取的热量连压缩机消耗的功转化的热量在冷凝器中被冷却介质带走。
而空调的节能管理工作较为薄弱,能源浪费现象较为严重,只有运行在最佳的工况和条件,才能发挥空调的最大制冷量,达到空调节能的目的。
由于空调四大件中,压缩机效率已经由投资成本决定,因此,影响空调制冷效果的具体因素究竟有哪些呢?
一、制冷系统的蒸发温度
制冷剂吸收热量后蒸发成气体,由压缩机吸走,使得蒸发器的压力不会因受热蒸发的气体过多而压力升高,从而使蒸发温度也升高,以致影响制冷效果,而这个温差,是结合空调的投资成本(要降低温差,必须加大空调循环风量,增大空调的蒸发器,导致空调成本的增加),及制冷工作时能耗费用而综合决定的。在科士达机房精密空调中,蒸发器采用的是直接蒸发式,这个温差为12~14℃。而实际上,由于种种不良因素的影响,不能很好的保证这个温差,有时在20℃以上(蒸发器上结冰),这样能耗就增加了。通过计算,在冷凝温度不变情况下,蒸发温度越低,压缩机制冷效果降低,排气温度升高。制冷系统中蒸发器的制冷剂,蒸发温度降低1度,要产生同样的冷量,耗电约增加4%左右。
二、胀阀开启度不对
必须定期测量膨胀阀过热度,调整膨胀阀开启度。步骤如下:
1.停机。将数字温度表的探头插入到蒸发器回气口处的保温层内,准备读出蒸发器回气的温度T1。将压力表与压缩机低压阀的三通相连(HIROSS40UA等没有低压阀的空调,则将压力表与蒸发器上的接头相连),准备读出蒸发器出口压力所对应的温度T2。
2.开机,让压缩机运行15分钟以上,进入正常运行状态,使系统压力和温度达到一恒定值。现场测得高压压力为18Kg/cm2,高压开关始终处于闭合运行状态,故对系统影响不大,不用作特别处理。
3.读出蒸发器出口温度T1与蒸发器出口压力所对应的温度T2,过热度为两读数之差。注意,必须同时读出这两个读数,因为膨胀阀是一个机械结构,它的动作会同时引起T1和T2的改变。
4.膨胀阀过热度应在5-8℃之间,如果不是,则进行调整。
具体调整步骤:
①拆下膨胀阀的防护盖;
②转动调整螺杆2—4圈;(专业空调的膨胀阀一般采用压杆式和散型齿轮式,散型齿轮式是用一个小齿轮带动一个大齿轮,调节的圈数比较多,一般可以调2~4圈;压杆式可调圈数比较少,每次调1/4圈;O65空调的膨胀阀采用散型齿轮式)。
③等10分钟后,从新测量过热度,是否在正常范围,不是的话,重复上述操作。调节过程必须小心仔细。(如果膨胀阀油堵严重,应用无水乙醇进行清洗,再从重新装上;失去调节功能的膨胀阀应更换;更换时,注意安装位置和做好保温)。
三、制冷系统的冷凝压力
1.空调冷凝器已脏污
科士达机房精密空调一般采用风冷式冷凝器,它由多组盘管组成,在盘管外加肋片,以增加空气侧的传热面积,同时,采用风机加速空气的流动,以增加空气侧的传热效果。因片距较小,加上科士达机房精密空调连续长时间使用,飞虫杂物及尘埃粘在冷凝器翅片上,致使空气不能大流量通过冷凝器,热阻增大,影响传热效果,导致冷凝效果下降,高压侧压力升高,制冷效果降低的同时,消耗了更多的电力,冷凝压力每升高1kg/cm2,耗电量增加6~8%。
对策:结合空调使用环境,根据结灰情况,定期对空调外机进行冲洗,具体方法是用水枪或压缩空气,由内向外冲洗空调冷凝器,清除附在冷凝器上的杂物和灰尘,现在杭州电信分公司每年两次对机房空调外机进行冲洗,保证良好的散热效果的同时,节约了大量的能源。
2.冷凝器配置不当
有些厂家为了节约成本,追求利润最大化,故意配置偏小的冷凝器,使空调制冷效果降低,这种情况尽量在空调设计时进行避免,但有时也会发生,夏天造成空调频繁高压告警,频繁冲洗空调外机也无济于事,严重加重了维护人员的工作量。
对策:解决根本还在于更换合适的冷凝器。
3.系统内部有空气
如果空调抽真空不够,加液时不小心,就会混进空气。空气在制冷系统中是有害的,它会影响制冷剤的蒸汽的冷凝放热,使冷凝器的工作压力升高,如当时的冷凝温度为35度,对应的冷凝压力为12.5kg/cm2表压,可实际压力表的压力可能是14kg/cm2,这多出来的1.5kg/cm2的空气占据在冷凝器中(道尔顿定律),由于排气压力增高,排气温度也升高,制冷量减少,耗电量增加,所以必须清除高压系统中的空气。
对策:进行放空气操作。在停机情况下,从排气口或冷凝器丝堵处放气进行放气操作。
通过以上手段,可以保证空调工作在最佳状况,不仅降低了空调的故障率,而且单台空调在夏季可以节约10%~20%的能量。
通常人们把空调制冷系统看得很简单,认为只要 IT 设备运行创造一个符合要求符合标准的温度环境就可以了。其实不然,如何预测数据中心规模,如何解决与功率密度相关的热量问题,如何使系统达到预期的可用性,如何确定数据中心机房基础设施投资总成本,以及如何规划数据中心可持续发展能力,包括资源或能力的利用与扩充问题,如何实现系统的可扩展性、适应性和可改造性,如何兼顾系统的经济性,如何提高系统的可维护性等,同样都在数据中心空调制冷系统的规划设计中反映出来。
1、科士达精密空调适应性与扩展性要求
面对不断增加的规模、无法预测的功率密度,行业对于功率密度需求的预测显示出巨大的不确定性。但是,新建的数据中心必须满足10年内的要求,同时还需要将每隔1.5到2.5年进行的IT设施升级成本考虑在内。这就要求提高空调制冷系统设计的适应性和灵活性,特别是要解决局部的的高密度机架冷却的冷却问题。在未来的高密度数据中心中,这种情况是很常见的。
适应性要求是对空调制冷系统规划设计最重要的要求,尤其要解决高密度机架系统冷却涉及的问题,而高密度机架数量和位置在建设初期又是不确定的。通常每隔1.5到2.5年数据中心或网络机房需要进行的 IT 升级,使适应性这一问题变得更为复杂。客户通常不能预测他们的冷却系统是否会满足未来的复杂情况,甚至在了解复杂特点的情况下也不能做出预测。
2、科士达精密空调可用性要求
空调制冷系统面临消除冷热空气混合的问题:供气和排气混合会降低CRAC设备的返回空气温度,同时提高IT设备的供气温度。CRAC设备必须设置为提供非常冷的空气以克服这个问题,否则会严重影响系统的冷却性能。解决办法是:最大限度地减少IT设备排气和供气混合的系统。
在满足要求的情况下,确保系统的冗余。冗余系统中CRAC设备故障会降低冷却能力,也会影响气流的物理分配,而且冗余性很难规划和验证。在设计上,系统可以在CRAC设备或相关基础设施发生故障时确保所有IT设备的气流和供气温度。
3、科士达精密空调生命周期成本要求
空调制冷系统的规划设计要求优化资本投资和可用空间。系统要求很难预测,经常会超大规模设计。解决办法是:采用可随要求增长的模块化系统,并且加快装配速度,降低服务合同成本,采用标准化设计,使系统性能能够精确预测和量化。
用户对生命周期成本需求的关注不如对适应性和可用性要求的关注大。满足生命周期成本需求的解决方案要求采用预制的、标准化的模块化解决方案。
4、科士达精密空调可服务性要求
可服务性需求中常提到的一个话题就是,用户相信冷却设备可以在设计上更加易于维修。这就要求缩短平均恢复时间(包括维修时间以及技术人员到达、诊断和部件到货时间),简化系统复杂性。如果系统非常复杂,以至于服务技术人员和内部维护人员不得不在运行和维护系统过程中断开负载,那么系统的可服务性将大打折扣。此外,系统设计应该追求更加简单的维修程序,最大程度减少厂商接口。
5、科士达精密空调可管理性要求
管理系统必须清楚地描述任何问题,提供与问题症状更加相符的数据报告以及出现问题时详细的系统性能状况信息,以便进行故障排除,提供预测性故障分析。许多冷却组件都会出人意料地发生故障或中断,或者在没有通知的情况下降级,而且没有提前警告,这样采取可能会防止负载损坏的补救措施。这要求系统设计者 以一种提前提供组件故障警告的方式为制冷系统配置仪表。对于消耗品或寿命有限的部件,自动通知剩余的预期寿命和更换时间,在必要的情况下,考虑调整系统性能以适应降级的消耗品。
6、科士达精密空调节能要求
许多机房面临资源的过度供应。大多数机房采用强制通风方式盲目散热,造成制冷能量的巨大浪费,资源利用率低下。节能降耗是当代数据中心规划设计的三个重点之一,而空调制冷系统又是降低数据中基础设施心能耗的关键。这就要求制冷系统采用模块化设计,提高制冷设备适性和扩展能力,提高设备利用率。
资源孤岛现象。机房内各空调设备(CRAC)完全隔离,不能合理调度,不同设备甚至工作在相反的制冷和加热状态。系统可以通过提高制冷设备的智能化管理水平,协调各空调设备的工作状态。
没有测量的尺度。散热设备不了解机房内 IT设备发热状况和温度分布,只能盲目送风、“移动空气”,无法按 IT 设备稳定运行温度要求供应散热资源,造成机房内温度过低,但仍有局部的过热点 。这需要设计者改变“房间制冷”设计理念,采用机架制就近冷技术。
一、科士达精密空调不间断运行、常年制冷
机房内设备散热属于稳态热源,全年不间断运行,这就需要有一套不间断的空调保障系统,在空调设备的电源供给方面也有较高的要求,不仅需要有双路市电互投,而且对于保障重要计算机设备的空调系统还应有发电机组做后备电源。长期稳态热源造成即便在冬季机房内也需要制冷,尤其是在南方地区,更为突出。在北方地区,如果冬季仍需制冷,在选择空调机组时,需要考虑机组的冷凝压力和其他相关问题,另外可增加室外冷空气进风比例,以达到节能的目的。
二、科士达精密空调风量大、焓差小
设备的热量是通过传导、辐射的方式传递到机房内,设备密集的区域发热量集中,为使机房内各区域温湿度均匀,而且控制在允许的基数及波动范围内,就需要有较大的风量将余热量带走。另外,机房内潜热量较少,一般不需要除湿,空气经过空调机蒸发器时不需要降至零点温度以下,所以送风温差及焓差要求较小,为将机房内余热带走,就需要较大送风量。
三、科士达精密空调显热量大
机房内安装的主机及外设、服务器、交换机、光端机等计算机设备以及动力保障设备,如UPS电源,均会以传热、对流、辐射的方式向机房内散发热量,这些热量仅造成机房内温度的升高,属于显热。一个服务器机柜散热量在每小时几千瓦到十几千瓦,如果是安装刀片式服务器,散热量会高一些。大中型计算机房设备散热量在400W/m2左右,装机密度较高的数据中心可能会到600W/m2以上。机房内显热比可高达95%。
四、科士达精密空调潜热量小
不改变机房内的温度,而只改变机房内空气含湿量,这部分热量称为潜热。机房内没有散湿设备,潜热主要来自工作人员及室外空气,而大中型计算机机房一般采用人机分离的管理模式,机房围护结构密封较好,新风一般也是经过温湿度预处理后进人机房,所以机房潜热量较小。
五、科士达机房空调与普通舒适空调的区别
计算机机房对温度、湿度及洁净度均有较严格的要求,因此,计算机机房专用空调在设计上与传统的舒适性空调有着很大区别,表现在以下5个方面:
1.传统的舒适性空调主要是针对于人员设计,送风量小,送风焓差大,降温和除湿同时进行;而机房内显热量占全部热量的90%以上,它包括设备本身发热、照明发热量、通过墙壁、天花、窗户、地板的导热量,以及阳光辐射热,通过缝隙的渗透风和新风热量等。这些发热量产生的湿量很小,因此采用舒适性空调势必造成机房内相对湿度过低,而使设备内部电路元器件表面积累静电,产生放电从而损坏设备、干扰数据传输和存储。同时,由于制冷量的(40%~60%)消耗在除湿上,使得实际冷却设备的冷量减少很多,大大增加了能量的消耗。
科士达机房专用空调在设计上采用严格控制蒸发器内蒸发压力,增大送风量使蒸发器表面温度高于空气露点温度而不除湿,产生的冷量全部用来降温,提高了工作效率,降低了湿量损失(送风量大,送风焓差减小)。
2.舒适性空调风量小,风速低,只能在送风方向局部气流循环,不能在机房形成整体的气流循环,机房冷却不均匀,使得机房内存在区域温差,送风方向区域温度低,其他区域温度高,发热设备因摆放位置不同而产生局部热量积累,导致设备过热损坏。
而科士达机房专用空调送风量大,机房换气次数高(通常在30~60次/小时),整个机房内能形成整体的气流循环,使机房内的所有设备均能平均得到冷却。
3.传统的舒适性空调,由于送风量小,换气次数少,机房内空气不能保证有足够高的流速将尘埃带回到过滤器上,而在机房设备内部产生沉积,对设备本身产生不良影响。且一般舒适性空调机组的过滤性能较差,不能满足计算机的净化要求。
采用科士达机房专用空调送风量大,空气循环好,同时因具有专用的空气过滤器,能及时高效的滤掉空气中的尘挨,保持机房的洁净度。
4.因大多数机房内的电子设备均是连续运行的,工作时间长,因此要求机房专用空调在设计上可大负荷常年连续运转,并要保持极高的可靠性。舒适性空调较难满足要求,尤其是在冬季,计算机机房因其密封性好而发热设备又多,仍需空调机组正常制冷工作,此时,一般舒适性空调由于室外冷凝压力过低已很难正常工作,机房专用空调通过可控的室外冷凝器,仍能正常保证制冷循环工作。
5.科士达机房专用空调一般还配备了专用加湿系统,高效率的除湿系统及电加热补偿系统,通过微处理器,根据各传感器返馈回来的数据能够精确的控制机房内的温度和湿度,而舒适性空调一般不配备加湿系统,只能控制温度且精度较低,湿度则较难控制,不能满足机房设备的需要。
综上所述,机房专用空调与舒适型空调在产品设计方面存在显著差别,二者为不同的目的而设计,无法互换使用。计算机机房内必须使用机房专用空调。目前,国内许多行业,如金融、邮电通信、电视台、石油勘探、印刷、科研、电力等已经广泛采用,提高了机房内计算机、网络、通信系统的可靠性和运行的经济性。
六、科士达精密空调应用范围
科士达机房精密空调机广泛适用于计算机机房、程控交换机机房、卫星移动通讯站、大型医疗设备室、实验室、测试室、精密电子仪器生产车间等高精密环境,这样的环境对空气的温度、湿度、洁净度、气流分布等各项指标有很高的要求,必须由每年365天、每天24 小时安全可靠运行的专用机房精密空调设备来保障。
空调系统调试步骤总括为以下四步:
(1)设备单机试运行;
(2)系统联动试运行;
(3)无生产负荷系统联合试运转;
(4)带生产负荷的综合效能测试。
本文主要针对以下几个在调试过程中易出现的问题及解决办法进行阐述。
2.1科士达空调机组单机试运行易出现的问题及解决办法
(1)空调机组单机试运行时个别机组送风风量小,噪音大,经现场实际测量风量仅有原设计能力的三分之一。例如济南西客站高架候车厅中间机房空调机组设计风量为110000m3/h,而现场实际测量32150m3/h。解决过程:停机后首先我们对所有风机和风管相连接的阀门、风口检查一遍,发现都处在打开状态,管道上不存在问题;其次对空调机组内部进行检测,发现设备运转正常;最后检查设备电气接线问题,发现风机接线相序接反(图1所示),导致风机反转,使得风机叶片反方向运转,从而导致风量无法满足设计要求。在调整风机接线相序以后,经过重新测量,该机组风量满足设计要求。
(2)在调试过程中个别空调机组运转正常,但是风口出风量达不到设计要求。
解决过程:首先停机检查电机接线及设备及阀门是否正常,经过检查没有出现异常。之后在风机运转情况下打开检查口,观察空调机组内部设备运行,发现当风机正常运转时,回风阀门由开启逐渐关闭,导致了回风箱回风量满足不了设计要求,最后使得即使风机运转但是出风量太小。检查发现空调控制程序设置采用的是统一程序,而施工现场空调机组安装方法与设计控制程序不符,才导致了以上问题产生。
2.2空调系统调试过程中风口风速不均匀问题及解决办法
售票大厅空调球形喷口出风风速不均匀,由于该工程空间区域布置很广,下面就选取比较典型的一个售票厅作为研究对象,球形喷口布置如下图所表示。
对以上风口出风速度进行测量记录结果如表1所示。
通过对现场风管走向及安装位置进行研究,并结合空调机房内部结构得出风速不均匀原因如下:
(1)空调机房层高过低,使得机组出风口出风阻力部分增大,导致了出风不畅,在这里损失了一部分能量。
(2)由于装修结构及层高限制,使得风管主管道与风口支管连接拐弯过多,增加了系统阻力。为解决以上问题,采取如下措施:
A.对出风口风管尽量采用减少阻力措施比如加导流叶片、圆弧度风管代替直角风管;
B.对于风口与主管连接处软管采用复合风管代替以减少阻力;最后调节风管处风阀使得各处出风风速一致。
经过以上方法进行改善之后,使得风口风速达到设计要求,测得各处出风口风速如表2所示。
2.3综合效能测试中出现的问题及解决办法
室内温度达不到设计要求。现以济南西客站售票厅内温度举例,在整个系统正常运行的情况下,售票厅1、售票厅2、售票厅3室内温度分别为26度、29度、26.4度。而售票厅1是从冷冻机房分水器出来的一个系统,售票厅2和售票厅3为从冷冻机房分水器出来的同一个系统。按照系统原理分析售票厅2和售票厅3是温度应该是相同的。而实际测得温度是售票厅2和售票厅3相差2.6度。
通过所测得数据分析,售票厅2空调制冷效果满足不了设计要求。对机房内空调机组冷冻水系统温度计观察,发现冷冻供回水温度与其他空调机组温差达到10度左右。通过所观察现象对该机组冷冻水系统管路进行全面检查,最后发现在进机房处有一处下反弯,此处没有设置排气阀,导致此处聚集大量气体,使得冷冻水无法正常循环。以上原因导致了机组内的水成了死水,就使系统内冷冻水不能循环。在此处加设排气阀,经过重新运行系统之后三个售票厅温度基本一致,满足设计要求。
3.结论
综上所述一个建筑中空调系统的运行效果好坏与设计质量和安装质量两个方面有关,同时安装质量中包括运行初期的系统调试问题,如在安装完毕后不进行系统调试,就不能达到理想的设计效果,有的甚至会造成能源的大量浪费,因此系统调试是不可缺少的一环,应加强重视。
联系人:王培
手机:15210159464
电话:400-7655-808
邮箱:15210159464@126.com
地址: 北京市大兴区旧桥路25号院3号楼2层205