为了确定科士达精密空调机的容量,以满足机房温度、湿度、洁净度和送风速度的要求(简称四度要求)。必须首先计算机房的热负荷。
机房的热负荷主要来自两个方面:
其一是机房内部产生的热量,它包括:室内计算机及外部设备的发热量,机房辅助设施和机房设备的发热量(电热、蒸气水温及其它发热体)。这些发热量显热大、潜热小;
照明发热(显热);
工作人员的发热(显热小、潜热大);
由于水分蒸发、凝结产生的热量(潜热)。
其二是机房外部产生的热量,它包括:
传导热。通过建筑物本体侵入的热量,如从墙壁、屋顶、隔断和地面传入机房的热量(显热);
放射热(也称辐射热)。由于太阳照射从玻璃窗直接进入房间的热量(显热);
对流产生的热量。从门窗等缝隙侵入的高温室外空气(也包含水蒸气)所产生的热量(显热、潜热);
为了使室内工作人员减少疲劳和有利于人体健康而引入的新鲜空气所产生的热量(包括显热和潜热)。
总之,人体放出的热量、缝隙风侵入的热量和换气带进的热量,不仅使室温升高,也会增加室内的含湿量,因此需要除湿。这部分热负荷称为潜热负荷,而机房内所有设备散发的热量只是室内的温度升高,这种热负荷称为显热负荷。与一般宾馆、办公室、会议室等潜热占有相当大比例所不同的是,计算机、程控机机房内的热负荷是以显热负荷为主。因此对于热负荷状况不同的场合应选用不同类型的空调机。通常用显热比(SFH)作为空调机的重要指标。
概略计算(也称为估算)
在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。
计算机房(包括程控交换机房):
楼层较高时,250~300kcal/m2h
楼层较低时,150~250kcal/m2h (根据设备的密度作适当的增减)
办公室(值班室):90kcal/m2h
简易热负荷计算
计算机房科士达精密空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。计算机制造商,一般能提供设备发热量的具体数值。否则根据计算机的耗电量计算其发热量。
a. 外部设备发热量计算
Q=860N¢(kcal/h)
式中:N:用电量(kW); ¢:同时使用系数(0.2~0.5); 860:功的热当量,即l kW电能全部转化为热能所产生的热量。
b. 主机发热量计算 Q=860× P× h 1×h 2 ×h 3
式中,P:总功率(kW);
h 1:同时使用系数;
h 2:利用系数;
h 3:负荷工作均匀系数。
机房内各种设备的总功率,应以机房内设备的最大功耗为准,但这些功耗并未全部转换成热量,因此,必须用以上三种系数来修正,这些系数又与计算机的系统结构、功能、用途、工作状态及所用电子元件有关。总系数一般取0.6~0.8之间为好
c. 照明设备热负荷计算
机房照明设备的耗电量,一部分变成光,一部分变成热。变成光的部分也因被建筑物和设备等所吸收而变成热。照明设备的热负荷计算如下:
Q=C×P kcal/h
式中, P:照明设备的标称额定输出功率(W);
C:每输出l W的热量(kcal/h W),通常自炽灯0.86,日光灯1.0。
d. 人体发热量
人体内的热是通过皮肤和呼吸器官放出来的,这种热因含有水蒸汽,其热负荷应是显热和潜热负荷之和。
人体发出的热随工作状态而异。机房中工作人员可按轻体力工作处理。当室温为24℃时,其显热负荷为56cal,潜热负荷为46cal;当室温为21℃时,其显热负荷为65cal,潜热负荷为37ca1。在两种情况下,其总热负荷均为102cal。
e. 围护结构的传导热
通过机房屋顶、墙壁、隔断等围护结构进入机房的传导热是一个与季节、时间、地理位置和太阳的照射角度等有关的量。因此,要准确地求出这样的量是很复杂的问题。
当室内外空气温度保持一定的稳定状态时,由平面形状墙壁传入机房的热量可按下式计算:
Q=KF(t1-t2) kcal/h
式中, K:围护结构的导热系数(kcal/m2h℃);
F:围护结构面积(m2);
t1:机房内温度(℃);
t2:机房外的计算温度(℃)。
当计算不与室外空气直接接触的围护结构如隔断等时,室内外计算温度差应乘以修正系数,其值通常取0.4~0.7。常用材料导热系数如下表所示:
材料 导热系数 (kcal/m2h℃) 材料 导热系数 (kcal/m2h℃)
普通混凝土 1.4~1.5 石膏板 0.2
轻型混凝土 0.5~0.7 石棉水泥板 1
砂浆 1.3 软质纤维板 0.15
熟石膏 0.5 玻璃纤维 0.03
砖 1.1 镀锌钢板 38
玻璃 0.7 铝板 180
木材 0.1~0.25
f. 从玻璃透入的太阳辐射热
当玻璃受阳光照射时,一部分被反射、一部分被玻璃吸收,剩下透过玻璃射入机房转化为热。被玻璃吸收的热使玻璃温度升高,其中一部分通过对流进入机房也成为热负荷。
透过玻璃进入室内的热量可按下式计算:
Q=KFq (kcal/h )
式中, K:太阳辐射热的透入系数;
F:玻璃窗的面积(m2);
q:透过玻璃窗进入的太阳辐射热强度(kcal/m2h)。
透入系数K值取决于窗户的种类,通常取0.36~0.4。
太阳辐射热强度q随纬度、季节和时间而不同,又随太阳照射角度而变化。具体数值请参考当地气象资料。
g. 换气及室外侵入的热负荷
为了给在计算机房内工作人员不断补充新鲜空气,以及用换气来维持机房的正压,需要通过空调设备的新风口向机房送入室外的新鲜空气,这些新鲜空气也将成为热负荷。 通过门、窗缝隙和开关而侵入的室外空气量,随机房的密封程度,人的出入次数和室外的风速而改变。这种热负荷通常都很小,如需要,可将其拆算为房间的换气量来确定热负荷。
h. 其它热负荷
在机房中,除上述热负荷外,在工作中使用示被器、电烙铁、吸尘器等都将成为热负荷。由于这些设备的功耗一般都较小,可粗略按其额定输入功率与功的热当量之积来计算。 此外,机房内使用大量的传输电缆,也是发热体。其计算如下:
Q=860 Pl (kcal/h)
式中, 860:功的热当量(kca1/h);
P:每米电缆的功耗(W); l:电缆的长度(m)。
总之,机房热负荷应由上述a—h各项热负荷之和来确定。
在以往的科士达精密空调系统设计中,多采取集中制冷模式,将空调房间考虑成一个均匀空间,按现场最大需求量来考虑。这种模式忽视了空间各部分的需要,缺少考虑制冷效率、制冷成本的意识。目前随着科学技术的发展以及高密度大型数据中心的建设需求,人们逐渐认识到集中制冷的弊端和按需制冷的必要性。
按需制冷就是按机房内各部分热源的即时需要,将冷媒送到最贴近热源的地方。其最大的特点是制冷方式的定量化和精准化,从“房间级”制冷转变为“机柜级”制冷,最后到“芯片级”制冷。
在数据中心建设和改造工程中可以看到运营商态度的变化。从设备集采方面,运营商更加关注空调本身的节能性能与安全问题;在数据中心的设计与建设改造方面,运营商与厂商就新技术不断沟通协调,根据政策的变化,及时调整机房空调系统的技术方案。
盘点近期机房空调系统建设与改造过程中的技术变革,体现在水冷替代、气流优化、新风交换三个方面。
水冷空调机组代替风冷机组
目前通信机房空调大多数采用风冷型专用空调机组,风冷型机组均为单元式机组,具有安装灵活、可靠安全的优点,但也存在性能系数较低、运行性能不稳定、受室外环境温度变化波动较大、室内外机组安装管线较短、室外机组占用大量建筑面积的缺点。
水冷或乙二醇冷却系统的内部结构与风冷式机组相同,室内空气通过蒸发器盘管循环。与风冷式不同的是,水冷机组内部安装有板式冷凝器,将实现房间热量与乙二醇溶液之间的热转换。该冷凝器内的液体作为一个二级传热媒介,被抽到远处安装的空气冷却式干冷器或冷却塔内,热量在那里最终排到大气。水冷却系统机房专用空调机组每台机组均自带制冷循环系统,并配有单独的水冷冷凝器,冷凝器置于室内机内部。所有机组的冷却水可以做成一个冷却水循环系统,由水泵提供循环动力,室外冷却水可采用开放冷却水塔和封闭干冷器两种方式。机房专用空调要求一年四季连续运行,通常采用冷却水塔的冷却方式。
从节能角度考虑,有的专用空调机组在水冷或乙二醇冷却系统的蒸发器上平行加入一个自然冷却用的盘管。在较低的室外环境温度下,通过中央控制器精确地控制阀门,自然冷却盘管将吸收室内的全部的传热量。在换季期间,环境温度将降至机房所需的温度以下,自然冷却盘管将提供预制冷以减少压缩机的运行时间,压缩机一般只需80%的输入功率,因此可以显著地节省成本。水冷节能效率、性能系数高于风冷机组。在通信机房中推广水冷型专用空调机组具有一定程度的节电降耗价值,特别是在一些中、大型项目上节能效益显著。
从建设投资方面考虑,水冷或乙二醇冷却系统不需要室内、室外机的连接铜管,只需要一组冷却水管道可以将所有的机组连接在一起,在大型数据中心系统里,工程量能相对减少,不存在室内、室外机距离限制;可以用几组较大的室外干冷器做N 1备份工作方式,在中大型数据中心占地面积相对较小,同时水循环管道不需要太厚的保温处理,节省通道空间;扩容方便,初期设计时留好接口,不需要在投入使用后需要扩容时再寻找室内、室外机通道,这些方面都可以大大减少空调设备的投资及后期维护费用。
机房科士达精密空调气流组织科学化
过去,大多数通信机房采用上送风空调系统,首先降低机房的环境温度,然后才能使机柜降温、冷却。就其效率而言,空调的能量显然有一部分消耗在降低环境温度上,而不是直接去降低设备的温度。
采用上送风方式的机房,大多数机房内气流组织混乱,冷热气流混合现象严重,导致机房制冷利用效率低下,而且局部热点问题时有发生。
据了解,目前许多数据中心机房通过“风孔下移”,对机房实施节能改造。大中型计算机及大容量的程控交换机散热量大,且集中,因此要对程控设备进行直接送风冷却。程控交换机设备的进风口一般设在其机架下侧或底部,排风口设在机架的顶部。空气通过架空活动地板由进风口进入沿机架自下而上迅速有效地使设备得到冷却。采用“全封闭冷气通道精确送风”时,送风截面积、送风温度一般情况不变,只要改变冷空气的送风风速,就可以满足不同发热量的机柜的散热要求。这样,减少了送风回路中的冷量损失,尽量靠近机架服务器区域,提高空调的工作效率,减少能耗,同时有效改善了机房出现的局部高温情况。
同时,机房设计过程中,提出了“冷热分区”概念。在未安装设备的机架处,安装挡风板(消隐板),挡风板的规格应与其上下设备严密接触,防止冷、热风短路;改变机柜位置的排列方式,由以往的同方向变为“背对背、面对面”安放,使冷热风路分离,引导冷热气流,提高了空调的制冷效率;另一方面采用改进的机柜系统,将动力和弱电线缆放置于机柜两侧的专用通道中,解决了机柜内的热量问题,同时也提高中心机房的管理性及未来的扩展空间。
新风交换节能技术
一般通信机房空间密闭,设备发热量较大,新风节能技术是一种借鉴了采暖通风中的新风机组,针对通信机房自身环境要求而设计出的集通风系统、控制(监控)系统、气流组织于一体的节能系统。利用自然冷源冷却技术实现新风节能的主要方式有二种。
自然通风新风系统:当室外空气温度较低时,直接将室外低温空气送至室内,为室内降温;当室外温度高,不足以带走室内热量时,则开启空调。该方式直接引入室外的空气,机房环境易受外界的影响。
热交换新风系统:采用隔绝换热方式,通过室内外空气的显热交换以保证机房的空气温度要求。由于室内外空气相互隔离,室内空气洁净度不受室外空气的影响。
采用新风交换节能系统后,根据不同地方的环境温度选择合适的月份与空调系统协调应用调节机房温度,可以直接降低耗电量,同时间接节约的空调维护费用。
除以上提出的主要技术变革外,更换空调的制冷剂、应用热管技术等方式都得到了重视与选择,在很大程度上提高科士达精密空调的制冷效率,减少耗电量,节约系统的建设和维护投资。
随着机房基站内的服务器向低价格、小型化、高功率密度方向的发展,对空调的制冷能力带来了更多的压力和挑战。通信行业机房基站建设要采用新思维,加强新技术的跟踪和应用。从机房基站建设、设备采购开始就应着重考虑空调系统的节能。
机房科士达精密空调具有除湿功能,具体是通过湿度控制器实现的。机房科士达精密空调湿度控制器的种类很多,如干湿球湿度控制器,毛发、尼龙薄膜湿度调节器,氯化锂湿度调节器等等。
1.机房科士达精密空调干湿球湿度控制器
通常将干湿球信号发送器与相对湿度比例积分调节器配套使用,组成机房空调干湿球湿度控制器,机房科士达精密空调干湿球湿度的测量,采用镍电阻或铂电阻,并装有专用小风扇。
机房科士达精密空调干湿球湿度控制器的安全使用与维护要求有如下几点:
(1)湿球温度计所用的小水瓶应经常添加水。
(2)湿球上的纱布为脱脂纱布,当纱布呈黄色、发硬时应更换。
(3)空气流速应在2.5~4m/s,保证其热交换。
(4)要远离热源和防止辐射对它的影响。
(5)干湿球温度计在低温时相对误差增大,因为温度降低时,干湿球温差显著减少,为了防止湿球温度计纱布套结冰,可以在蒸馏水中加入甲醛(福尔马林)水溶液,这样就可在-35℃以上使用。
2.机房科士达精密空调毛发、尼龙薄膜湿度调节器
利用毛发(或尼龙薄片)在空气相对湿度变化时形成的位移变化,去移动气动调节器的喷嘴挡板组件,和给定值信号比较后转换成压力信号,经放大后去推动气动执行机构,就形成了气动毛发式(或尼龙薄膜)湿度调节器,如用滑线电阻,取出电压信号经放大推动电动执行机构,就成为电动毛发式(或尼龙膜片)湿度调节器。
机房科士达精密空调制冷系统由压缩机、冷凝器和膨胀阀和蒸发器组成,其工作过程如下:制冷剂在压力温度下沸腾,低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力,然后送往冷凝器,在压力下等压冷却和冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常机房空调采用的空气),与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其他节流元件进入蒸发器。
在整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中的低压力,冷凝器中的高压力的作用,是整个系统的心脏;节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的;冷凝器是输出热量的设备,从蒸发器中吸取的热量连压缩机消耗的功转化的热量在冷凝器中被冷却介质带走。
机房科士达精密空调的节能
在我们电信生产中,机房空调的节能管理工作较为薄弱,能源浪费现象较为严重,所以加强机房空调的维护管理和技术改造,可以达到节能的目的。
从机房科士达精密空调的压焓图来看,只有运行在在最佳的工况和条件,才能发挥机房空调的最大制冷量,达到空调节能的目的。机房空调的节能,我们维护部门应该从运行成本、维护保养方面的角度进行考虑。
由于机房空调四大件中,压缩机效率已经由投资成本决定,因此影响空调制冷效果的主要是冷凝器、膨胀阀和蒸发器。
科士达精密空调制冷系统的蒸发温度
蒸发器内制冷剂的蒸发温度,应该比空气温度低,这样机房的热量才会传给制冷剂,制冷剂吸收热量后蒸发成气体,由压缩机吸走,使得蒸发器的压力不会因受热蒸发的气体过多而压力升高,从而使蒸发温度也升高,以致影响制冷效果,而这个的温差,是结合空调的投资成本(要降低温差,必须加大空调循环风量,增大空调的蒸发器,导致空调成本的增加),及制冷工作时能耗费用而综合决定的。在我们机房空调中,蒸发器采用的是直接蒸发式,这个温差为12~14℃(见空调与制冷技术手册P746),而实际上,由于种种不良因素的影响,不能很好的保证这个温差,有时在20℃以上(蒸发器上结冰),这样我们的能耗就增加了。通过计算,在冷凝温度不变情况下,蒸发温度越低,压缩机制冷效果降低,排气温度升高。制冷系统中蒸发器的制冷剂,蒸发温度降低1度,要产生同样的冷量,耗电约增加4%左右。
影响蒸发温度的因素有以下几点:
1.蒸发器管路结油:正常情况下由于润滑油和氟利昂互溶,在换热器表面不会形成油膜,可以不考虑油膜热阻,但在追加润滑油情况下,必须选用和原来标号相同的润滑油,防止油膜的产生。
2.干燥过滤器堵塞:为保证制冷剤的正常循环,制冷系统必须保持清洁、干燥,如果系统有杂质,就会造成干燥过滤器堵塞,系统供液困难,影响制冷效果。
3.空气过滤网堵塞:必须定期更换过滤网,保证空调所需的循环风量。
4.制冷剂太少。
科士达精密空调器产生震动和噪声的原因大致有以下几种:
(1)窗式或分体式空调器室外机组如果安装于脆弱结构的墙上,则震动力剧,会产生噪声;
(2)分体式空调器室外机组安装于不平的地面、阳台和屋顶上时,容易产生震动和噪声。
(3)机架不平,固定空调器的底脚螺栓末旋紧,容易产生震动和噪声
因此,空调器安装时对脆弱墙体要加强支撑,对不平的地面要垫平,机架紧应装平并旋底脚螺栓。
1.承重墙和非承重墙
承重墙是指承受房屋结构重量的实心砖墙和混凝土墙,如多层外墙和高层楼房的外墙。这类墙比较结实,膨胀螺栓容易固定牢,安装室外机组的机架后比较牢固。安装后空调器的重量由膨胀螺栓传递给墙体承受。
非承重墙是指砖砌空心墙、多孔砖砌墙。它们的主要作用是分隔房间或填满承重构件下的空隙面积,不支承房屋结构的重量,因此墙质比较疏松,单靠膨胀螺栓不易把机架牢固地固定于墙上。这种情况下如果要装室外机组,应打对穿螺栓孔,屋内加补板或扁钢,然后用双头长螺栓固定机架,以便能承受空调器的重量。
2.在非承重墙上安装科士达精密空调器时的加固方法
(1)安装窗式空调器时的加固方法
在强度不够的非承重墙上安装窗式空调器时,应在墙内侧或外侧采用加固角钢架,钢架用地脚螺栓固定在墙面上,以增加支承面积、分散墙壁的负载
(2)安装分体式科士达精密空调器室外机组时的加固方法
在强度不够的墙上安装分体式空调器的室外机组时,单靠4只膨胀螺栓不能将机架牢固固定在墙上,即使勉强固定好了也不牢固,时间长了空调器会跌落。在这种情况下要用双头长螺栓和内衬板或扁钢,把墙夹在中间固定外部机架,并使空调器的重量分散到较大的墙面积上文承,这样装就安全了
3.避免在钢筋混凝土墙上打穿墙孔
钢筋混凝土墙上不宜开装窗式空调器的穿墙孔(洞),因面积比较大,可能要截断几根纵向和横向的钢筋,这样会影响墙的结构强度,是绝对不允许的。如果安装分体式空调器,制冷剂配管束的穿墙孔(ф80%左右)最好不要打在有钢筋的混凝土墙上,因分不清钢筋的位置,遇到钢筋很容易损伤钻头刃具,而且打孔特别费力。如果实在无法改变位置,一定要在钢筋混凝土墙上打管子穿墙孔,要慢慢试着钻孔,谴到钢筋时换位置避开,先打小孔,然后慢慢扩大。
机房科士达精密空调位置与配置以多种方式影响数据中心的冷却效果,机房科士达精密空调室内机与室外机安装高度差也将会适当影响数据中心高效的运行。下面将简单介绍一下室内机与室外机高度差问题。
如果安装容许的话,高度差是越小越好。但在实际应用中,由于安装位置受限,室内外机很难安装在同一楼层,不可避免存在一定的高度差。
一般来说,对于机房空调,如果外机在高处的话,比较合适的是20米内;外机在下面,比较合适是5米内。在这个范围内,机房科士达精密空调受影响较小,压缩机的吸排气能力下降不大,机组的制冷量衰减也不大。
另外,通过加装单向阀、设置回油弯和反向弯,采用气管倾斜、液管倾斜和负高差管路增压等方法,可以加大这种高差。不同厂家,采用的技术不一样,最大容许高差有所不同。
实际中,高差越大,管阻越大,压缩机吸排气会下降,制冷量下降,也不利于冷冻油循环,压缩机的寿命会降低,如果安装措施不当,系统将难以运行。我们在实际安装中,要想办法减少这种高差。
总之,机房科士达精密空调安装过程中合理选择室内机与室外机的高度差,有利于机房空调的运行,从而使得整个数据中心正常运作。
1.新风节能技术
新风节能技术是目前应用比较多的节能方法,一些运营商已有多例采用新风节能的成功案例。此技术主要通过在机房内引入室外温度较低的自然风来带走机房内的热量,从而实现节能的目的。此方案实施方法简单尤其在室内外温差大的北方地区节能效果明显,而且可以通过传感器采集室内和室外空气温度自动控制新风系统的启停。但该方案的实施需要改变原来的建筑结构,新风系统引入室内新风的洁净度是个关键问题。目前有很多厂家提供的新风系统声称达到的洁净度在实际应用中被发现普遍难以达到。
2.变频节能
通过为机房科士达精密空调增加变频器达到改变压缩机的供电频率调节压缩机转速的方法,通过压缩机转速的快慢达到控制室温的目的。通过变频改造的空调在每次开始启动时,先以最大功率、最大风量进行制热或制冷,迅速接近所设定的温度后,压缩机便在低转速、低能耗状态下运转,仅以所需的功率维持设定的温度。此种方法不但温度稳定,而且还可以避免由于压缩机频繁地启停造成的对寿命衰减,而且耗电量大大下降从而实现了高效节能。但是这种方法的主要问题是变频器本身就是一个谐波源,他在实现变频控制的同时还会给供电电网带来一定的谐波影响。而且机房空调功率一般较大,所以多台变频器工作对机房供电系统带来的污染不可小觑,必须采取相应处理措施。
3.机房科士达精密空调的自适应控制节能技术
目前机房科士达精密空调普遍采用本机回风口传感器的温湿度值作为数据采样参考点,但其局限性在于无法实现整个机房平面的真实环境温湿度数据的监测。如何使机房空调气流得到优化控制,从而达到节能的效果是我们需要考虑的问题。
选择哪一种节能方案,需要根据机房的具体情况和机房所处的地域的气候条件来做出选择。对于一些通信枢纽楼机房多采用密闭结构,而且楼梯外观不允许做大的改变,在这种情况下比较适合选择自适应控制技术实现节能。而对于一些对建筑结构要求不是很高且所处环境存在室内外较大温差的机房则可以采用新风系统达到节能,节能的效果优于自适应控制技术。而对于变频技能存在不确定性在选择前一定要对可能出现的谐波污染做好处理预案。
机房科士达精密空调各系统的特点
在数据中心机房科士达精密空调系统中主要分为风冷直接蒸发式空调系统、水冷直接蒸发式空调系统、冷冻水空调系统、双冷源空调系统等空调系统。
以数据中心机房科士达精密空调系统作为集中冷源的冷冻水系统,该系统与各自独立的直接蒸发式空调系统相比,制冷效率更高,设备更集中更少,运行更稳定,故障率和维护成本更低,国外众多大型数据中心普遍使用冷冻水空调系统。
它通过冷冻水循环管路的精心设计以及控制逻辑的优化,实现与机房内部空调气流组织的完美匹配,并且可以根据室内热负荷以及室外环境的变化,对冷冻水流量进行灵活的调节,将自然冷却的效益发挥到最大,始终使机组保持高效运行。此套数据中心空调解决方案根据安装地区气候条件的不同,可以实现20%~50%的节能,使得运行费用大幅缩减,而为此增加的空调设备初投资,最多两年的时间就可以收回,而整个机组的使用寿命至少有10年。
冷冻水机房科士达精密空调系统包括不含冷源的冷冻水型机组加冷水主机,主要分为普通冷水主机和自然冷却冷水主机。普通冷水主机一般安装在建筑物的屋顶外部,它们专为室外安装设计,不需要增加任何针对恶劣天气的保护措施。
冷水机组按照不同冷凝方式可分为风冷和水冷两种,以风冷冷水主机为例,其工作原理是:携带室内热量的高温回水流入机组,进入壳管式蒸发器,被制冷剂盘管冷却,热量传递给制冷剂,由后者带到风冷冷凝器中,由风机驱动环境空气对其进行强制散热。按经验来说,一套空调设备的平均制冷量为设计值的85%,剩下部分作为冷量备份。
自然冷却冷水主机的工作原理:当室外温度较低时,就可以利用冷空气冷却高温回水,不需要开启压缩机即可为空调室内机提供冷量,这种方法即为自然冷却方法。利用自然冷却效应开发的冷水主机即为自然冷却冷水主机,它与普通冷水主机最大的区别在于它在冷凝盘管之前安装了自然冷却热交换盘管,旨在最先利用环境冷空气冷却盘管内的回水;另一个区别在于内部水循环系统的设计上,自然冷却循环利用三通调节阀将循环水路与自然冷却热交换盘管连接起来。
自然冷却冷水主机的工作原理并不复杂:当三通调节阀中旁通B完全关闭,A与C连通时,即自然冷却热交换盘管关闭,全部冷量由压缩机制冷提供;当室外温度低于回水温度时,A关闭,B与C连通,回水通过自然冷却热交换盘管预冷,然后再进入蒸发器,这样一来,压缩机只需部分工作就可以满足空调冷量的要求,从而节省了大部分能耗;
而当室外温度足够低时,A关闭,B与C连通,通过自然冷却就可以完全满足空调冷量要求,压缩机停机,这时机组总能耗明显降低,只包含自然冷却系统的能耗,总之,室外温度越低,节能效果越明显。如果采用自然冷却冷水机组比普通冷水机组每年大约节能20~50%,具体效果如何会因安装地区的气候条件而不同。
风冷直接蒸发式机组,适用于水源缺乏的地区和无冷却水系统的场所,可外挂或外置室外机(楼层不高,允许破坏建筑外观),系统简单,无须考虑配备水泵和冷却塔,也无需集中冷冻水系统为之服务。缺点为室内外机之前的管长受限,在室内外机之前接管超过60米时,需要根据实际情况采取解决方案。
水冷直接蒸发式机组,适用于有集中冷却水系统的场所,机组能效比风冷式机组高,机组安装不受室外场地限制。
双冷源机组具有直接蒸发式和冷冻水机组的双重优点外,同时还具有冷源相互备份的特点,当使用用户冷冻水资源时,只有冷冻水盘管换热,压缩机停止运行,有利于节能,当用户停止中央空调冷冻水系统时,机组启动压缩机进行制冷。
机房科士达精密空调系统各性能比较
首先,从机房科士达精密空调系统总投资的比较可以看到,双冷源系统,具有风冷和冷冻水系统双重特点,投资成本最高,但是系统的运行最稳定,维修和维护量最大。
自然冷却冷水主机加冷冻水机组和普通风冷冷水主机加冷冻水机组投资成本相当,比双冷源系统要小很多,自然冷却冷水机组在不同的安装条件可以达到不同的节能效果,所以在合适的安装地点推荐使用自然冷却冷水机组,风冷直接蒸发式机组和水冷直接蒸发式机组的系统总投资最小,风冷机组适用于全国范围内,其灵活性最高,而水冷机组更适用于南方地区。
从上述各空调系统的比较分析不难看出,对于北方城市的哈尔滨来说,四季分明,冬天温度相对比较低,所以不适宜使用水冷系列,故在比较时没有将此种空调系统考虑进去,在比较中发现自然冷却冷水主机加冷冻水机组的节能效果很明显,耗电量明显减少。
从系统总投资上可以看出,水冷冷水主机加冷冻水机组的系统总投资最少,在计算设备制冷总功率和耗电量时,直接蒸发式机组最高,其中还未考虑加热器、加湿器等耗电量,同时实际机组工作时直接蒸发式机组由于室内环境变化会引起压缩机的频繁启动,必然引起耗电量增加,而水冷冷水主机加冷冻水机组这样的情况没有直接蒸发式机组发生频繁,所以从能耗角度考虑直接蒸发式机组也没有水冷冷水主机加冷冻水机组系统要好,经计算,水冷冷水主机加冷冻水机组系统较风冷直接蒸发式机组要节能可达到20%左右。
1、科士达精密空调适应性与扩展性要求
面对不断增加的规模、无法预测的功率密度,行业对于功率密度需求的预测显示出巨大的不确定性。但是,新建的数据中心必须满足10年内的要求,同时还需要将每隔1.5到2.5年进行的IT设施升级成本考虑在内。这就要求提高空调制冷系统设计的适应性和灵活性,特别是要解决局部的的高密度机架冷却的冷却问题。在未来的高密度数据中心中,这种情况是很常见的。
适应性要求是对科士达精密空调制冷系统规划设计最重要的要求,尤其要解决高密度机架系统冷却涉及的问题,而高密度机架数量和位置在建设初期又是不确定的。通常每隔1.5到2.5年数据中心或网络机房需要进行的 IT 升级,使适应性这一问题变得更为复杂。客户通常不能预测他们的冷却系统是否会满足未来的复杂情况,甚至在了解复杂特点的情况下也不能做出预测。
2、科士达精密空调可用性要求
科士达精密空调制冷系统面临消除冷热空气混合的问题:供气和排气混合会降低CRAC设备的返回空气温度,同时提高IT设备的供气温度。CRAC设备必须设置为提供非常冷的空气以克服这个问题,否则会严重影响系统的冷却性能。解决办法是:最大限度地减少IT设备排气和供气混合的系统。
在满足要求的情况下,确保系统的冗余。冗余系统中CRAC设备故障会降低冷却能力,也会影响气流的物理分配,而且冗余性很难规划和验证。在设计上,系统可以在CRAC设备或相关基础设施发生故障时确保所有IT设备的气流和供气温度。
3、科士达精密空调生命周期成本要求
空调制冷系统的规划设计要求优化资本投资和可用空间。系统要求很难预测,经常会超大规模设计。解决办法是:采用可随要求增长的模块化系统,并且加快装配速度,降低服务合同成本,采用标准化设计,使系统性能能够精确预测和量化。
用户对生命周期成本需求的关注不如对适应性和可用性要求的关注大。满足生命周期成本需求的解决方案要求采用预制的、标准化的模块化解决方案。
4、科士达精密空调可服务性要求
可服务性需求中常提到的一个话题就是,用户相信冷却设备可以在设计上更加易于维修。这就要求缩短平均恢复时间(包括维修时间以及技术人员到达、诊断和部件到货时间),简化系统复杂性。如果系统非常复杂,以至于服务技术人员和内部维护人员不得不在运行和维护系统过程中断开负载,那么系统的可服务性将大打折扣。此外,系统设计应该追求更加简单的维修程序,最大程度减少厂商接口。
5、科士达精密空调可管理性要求
管理系统必须清楚地描述任何问题,提供与问题症状更加相符的数据报告以及出现问题时详细的系统性能状况信息,以便进行故障排除,提供预测性故障分析。许多冷却组件都会出人意料地发生故障或中断,或者在没有通知的情况下降级,而且没有提前警告,这样采取可能会防止负载损坏的补救措施。这要求系统设计者 以一种提前提供组件故障警告的方式为制冷系统配置仪表。对于消耗品或寿命有限的部件,自动通知剩余的预期寿命和更换时间,在必要的情况下,考虑调整系统性能以适应降级的消耗品。
6、科士达精密空调节能要求
许多机房面临资源的过度供应。大多数机房采用强制通风方式盲目散热,造成制冷能量的巨大浪费,资源利用率低下。节能降耗是当代数据中心规划设计的三个重点之一,而空调制冷系统又是降低数据中基础设施心能耗的关键。这就要求制冷系统采用模块化设计,提高制冷设备适性和扩展能力,提高设备利用率。
资源孤岛现象。机房内各空调设备(CRAC)完全隔离,不能合理调度,不同设备甚至工作在相反的制冷和加热状态。系统可以通过提高制冷设备的智能化管理水平,协调各空调设备的工作状态。
没有测量的尺度。散热设备不了解机房内 IT设备发热状况和温度分布,只能盲目送风、“移动空气”,无法按 IT 设备稳定运行温度要求供应散热资源,造成机房内温度过低,但仍有局部的过热点 。这需要设计者改变“房间制冷”设计理念,采用机架制就近冷技术。
科士达精密空调冷冻水循环系统是包括来自空调设备的冷冻水回水经集水器、除污器、循环水泵,进入冷水机组蒸发器内、吸收了制冷剂蒸发的冷量,使其温度降低为冷冻水,进入分水器后再送入空调设备的表冷器或冷却盘管内,与被处理的空气进行热交换后,再回到冷水机组内进行循环再冷却。
在空气调节中,常常通过水作为载冷剂来实现热量的传递,因此水系统是中央空调系统的一个重要的组成部分。传统观念认为,数据中心中设置了大量的用电设备,水进入机房会带来很大的危险。但是随着节能降耗观念的深入人心,美国从2000年起,冷冻水系统因其高效节能的优势开始大量的应用于数据中心制冷。因此,如何做好防止漏水及保证系统的可靠性就显得尤其重要。世纪互联根据多年的设计、工程和运行管理经验,提出下列措施:
1.水系统使用无缝钢管和优质阀门
使用优质的无缝钢管和阀门,降低水管漏水、阀门故障漏水等几率,从而提高系统的安全性和可靠性。
2.高质量的钢管焊接
采用厚壁优质无缝钢管,合理的焊接工艺提高焊接质量。钢管焊接完成后,采用3倍于运行压力进行管道打压实验。
3.水管采用环路系统
水管采用环路系统,即使某处发生故障,整个系统不受影响,仍然可以正常运行,提高系统的安全性。
4.消除水系统单点故障
在每个设备的前、后端设置截止阀;在每个阀门的前、后端,也设置截止阀。当系统中某个设备或某个阀门发生故障时,可以关闭相应阀门,在系统冗余范围内及时维修,不影响这个系统的正常运行。
5.地面防水、漏水检测
精密空调下方地面、管道间地面,应做防水并设置挡水围堰和漏水监测探头,出现漏水及时报警,提高系统的安全性。
6.采用封闭的管道间
采用封闭的管道间,水管主要布置在管道间中,即使发生漏水,也可以保证水不进入IT设备区域,提高系统的安全性。
7.保温及防冻
做好冷冻水管的保温,提高冷量输送效率。做好冷却水管、冷冻水管、冷却塔的防冻,提高系统的安全性。
通过以上途径,冷冻水空调系统的安全性和可靠性有了保证,也为在能源日益紧张,节能越来越迫切的今天,在数据中心这个高耗能环境中放心地使用冷冻水精密空调来制冷,有效的节省能源。
数据中心中设备密集布置,发热集中,显热量大,因而需要有合理的气流组织的分配和分布,以有效地移除机房内热量,保证满足机房内设备对温湿度、洁净度、送风速度等空气环境的要求。
数据中心空调系统送风方式分为机房送风与机柜近距离送风方式。
机房送风包括风帽上送风、风管送风、地板下送风等。最常用的是地板下送风方式。
机柜近距离送风又称为近距离制冷、精确制冷等,包括机柜行间制冷(侧前送风、侧后回风)、封闭机柜内部制冷等。
目前,数据中心常用的机房空调系统气流组织方式有下送风上回风、上送风前回风(或侧回风)等方式。无论何种气流组织方式,都应满足数据中心设备和相关规范的相关要求。
国标《电子计算机场地通用规范》(GB2887-2000)、国标《电子信息系统机房设计规范》(GB50174-2008)要求如下:
主机房内部维持正压(如机房与其他房间、走廊的压差不宜小于5Pa,与室外静压差不易小于10Pa),防止室外空气渗入,破坏机房内空气参数。
保证机房内换气次数,保证机房空气参数的精确调节。
主机房取的噪声限制(如声压级小于68dB),应选用高效、低振动、低噪声的空调、送风设备。
1、科士达精密空调风帽上送风
风帽上送风方式的安装较为简单、整体早教较低,对
联系人:王培
手机:15210159464
电话:400-7655-808
邮箱:15210159464@126.com
地址: 北京市大兴区旧桥路25号院3号楼2层205