欢迎光临~科士达UPS_科士达UPS官网_电源精密空调官网 4007655808
语言选择: 中文版 ∷  英文版

公司新闻

科士达UPS电源主要节能方式、方法

科士达UPS电源的功能主要有两个:一是在市电正常时改善对负载的供电质量,同时对后备电池进行充电;二是在市电异常时,通过后备电池保证向负载供电的不间断性。目前,科士达UPS电源的节能必需从方案、UPS、电池、配电等方面全方位进行。
1、按需扩容的柔性规划
一般数据中心的建设都不是一步到位,会考虑今后未来几年的扩容,在设计时科士达UPS电源容量一般都考虑容量比较大些,一次就安装了几套大功率的UPS并机,初期负载量只有规划容量的10%~20%,使UPS的利用率很低,造成电能的浪费。如何避免这种情况的发生,从UPS供电系统角度考虑,应该包括:
(1)供电方案设计
目前科士达UPS电源供电方案主要有分散供电、集中供电两种。分散供电是一台UPS为一台或多台设备供电。分散供电的好处是分散风险,不会因为一台UPS异常造成大部分设备停电;缺点是科士达UPS电源分散布置,不便管理,而且布线不容易规划。另一种是采用集中供电,由一套大功率的UPS直接对数据中心的所有负载供电。集中供电的好处是便于规划、管理方便、维护方便;缺点是如果科士达UPS电源系统异常,容易引起数据中心大面积停电事故,此缺点可以通过采用并联构架来避免。因此,以上两种方案各有优缺点,目前的数据中心一般都采用集中供电方案。由于科士达UPS电源并机数量有限制,而且当UPS系统并机数量超过4台时,其可靠性并不比单机供电系统高多少。当机房UPS装机总容量超过一定限度时,建议将机房按几期规划分成几个区域进行供电。规划时可以参考:单机容量不宜超过400kVA,并机数量不宜超过3台。
(2)科士达UPS电源在线并机扩容功能
数据中心的科士达UPS电源容量的规划,可以根据不同时期的负载容量要求,采用逐步扩容的方案,使投资方案更经济,同时也能使UPS工作处于较佳的效率点。目前中、大功率段的科士达UPS电源均已经具备冗余并机功能,不仅提高了系统的可靠性,同时也为机房扩容提供了条件。只要规划时在UPS前后配电箱预留足量的空气开关,并在机房规划相应空间,即可实现科士达UPS电源并机扩容功能。关键是并机的过程处理,多种品牌UPS并机时需要对UPS的设置进行修正,此时要求UPS必须工作在维修旁路状态,UPS由市电直接带载,如果此时市电波动较大甚至停电,将造成系统的大面积瘫痪。所以并机扩容必须具备在线并机功能,即UPS并机扩容时,只需将新增科士达UPS电源软件修改至与原UPS系统一致后,在不关闭原有UPS系统的情况下,直接将新增UPS并入原有系统即可,扩容前后,科士达UPS电源均工作于在线模式下,避免切换至旁路供电的高风险操作。
(3)采用模块化科士达UPS电源,实现逐步扩容
目前,模块化UPS已经开始在国内应用,模块化UPS特点主要包括:可扩容、平均故障修复时间(MTTR)短、可经济实现“N+X”冗余并机。
提高UPS自身能效,优化负载效率曲线
目前UPS均为在线式双变换构架,在其工作时整流器、逆变器均存在功率损耗。以一个容量为400kVA的UPS为例,每度电按0.95元计算,UPS效率每提高1%,一年节省的电费为400×0.8×0.01×24×365×0.95=26630.4元。可见提高UPS的工作效率,可以为数据中心节省一大笔电费,可见提高UPS效率是降低整个机房能耗的最直接方法。因此采购UPS,尽量采购效率更高的UPS。
当然UPS效率高不仅仅是满载时效率高,同时也必须具备一个较高的效率曲线,特别是在“1+1”并机系统时,根据系统规划,每台科士达UPS电源容量不得大于50%,如果此次效率仅为90%以下,就算满载效率达到95%以上,也是没有意义的,所以要求UPS必须采取措施优化效率曲线,使UPS效率在较低负载时也能达到较高的效率。
科士达UPS电源效率与输出功率关系曲线图
除了提高科士达UPS电源自身的效率之外,科士达UPS电源上面的一些功能也可加以利用。比如像ECO经济运行模式。其原理是在较好的市电环境时,激活此功能,使UPS由静态旁路直接供电,此时逆变器处于待机状态,正常工作,但不输出能,一旦市电异常,UPS立即切换到逆变器供电状态,切换时间一般在1ms以内,具体见图2所示,蓝色为输入电波形,黄色为输出电压波形。由于此时的逆变器处于待机状态,所以自身损耗很小,此时UPS的整机效率可以达到97%以上,比正常模式节省3%以上的功率。
ECO模式转正常供电模式波形图
使用ECO模式必须具备以下条件:
(1)静态旁路必须采用两组高可靠晶闸管,不得采用接触器加晶闸管的组合,因为接触器吸合时,接触点会打火,一般工作数百次之后就不能正常工作了。而晶闸管则不存在此问题,同时可以缩短切换时间。
(2)建议使用在较好的电力环境下,比如一级供电单位等。
3、降低输入电流谐波,提高功率因数
谐波产生的根本原因是由于电力线路呈现一定阻抗,等效为电阻、电感和电容构成的无源网络,由于非线性负载产生的非正弦电流,造成电路中电流和电压畸变,称为谐波。谐波的危害包括:引起电气组件附加损耗和发热(如电容、变压器、电机等);电气组件温升高、效率低、加速绝缘老化、降低使用寿命;*设备正常工作;无功功率增加,电力设备有功容量降低(如变压器、电缆、配电设备);供电效率低;出现谐振,特别是柴油发电机发电时更严重;空开跳闸、熔丝熔断、设备无故损坏。科士达UPS电源对于电网而言是一个非线性负载,在工作的时候会产生大量的谐波。以配置6脉冲整流器的UPS为例,其输入功率因数一般为0.75左右,谐波大于30%。降低科士达UPS电源工作谐波的主要方法有:
(1)采用12脉冲整流器。其原理是在原有6脉冲整流器基础上,在输入侧增加一个移相变压器和6脉冲整流器。采用该技术方案后,可以将谐波降低至10%左右。优点是较为简单,谐波改善明显;缺点是对功率因数改善有限,价格略高。
(2)采用无源滤波器。依据LC滤波电路原理,对科士达UPS电源产生的谐波进行滤除,并对功率因数进行补偿。优点是技术简单,成本较低;缺点是只能补偿特点阶次的谐波,同时受负载阻抗影响较大,无法适用于全功率段。
(3)采用有源滤波器。原理是利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。优点是可以补偿多个阶次的谐波,且不受负载阻抗大小的影响;缺点是购置成本较高。
(4)采用高频IGBT整流及PFC功率因数校正电路设计整流器。原理是采用高频率PWM控制IGBT导通,对输入电压波形进行分割,使输入电流波形尽量接近正弦波,并对输入电压和电流相位差进行补偿。优点是体积轻,价格便宜,效果好;缺点是技术结构复杂,不易维护,受功率器件影响,目前容量大小受到限制。
4、电池管理及配电管理技术
科士达UPS电源都配备了电池组,用户在电池组上的投资往往占整个科士达UPS电源供电系统投资的很大一部分,甚至超过UPS本身的投资,而电池的使用年限明显低于UPS设备。由于电池主要材料是重金属铅、硫酸和不易分解的塑料,都会对环境造成严重的污染。因此减少电池使用数量,延长电池循环使用寿命,不仅节省直接和间接的电池投资,而且还减少整个对环境的污染。所以科士达UPS电源可以通过以下几个技术实现电池的节能。
(1)并机共用电池组功能。共用电池组原理是通过特殊的整流器控制及故障隔离技术,使并机系统中的两台或多台UPS的整流同步、母线均流,使系统中的各台UPS母线直接并联,然后将满足系统后备时间要求的电池并联后接入并联母线系统中,实现电池的共享,减少电池投资。以“1+1”为例,传统的UPS方案,系统后备一小时,考虑其中一台UPS故障时,UPS2的电池不能为UPS1使用,所以UPS1和UPS2必须各配置一套一小时的电池组,才能保障系统在断电后还能备用一小时。采用共用电池组方案后,因为UPS1故障后,系统中的电池仍能为UPS2提供能量,所以整个系统仅需配置1套1小时电池即可。不仅节省了电池直接投资,同时也节约机房在空间、承重及空调等方面的投资,也降低了对环境的污染。或配置少许电池,增配发电机组。
(2)智能电池管理技术。影响电池寿命的因素有很多,主要包括温度、充电、放电、循环次数等。如果能够对上述几个因素进行综合处理,可以大大延长电池的使用寿命,延长电池更换周期,节约电池投资。UPS的智能电池管理技术主要包括:电池均浮充管理(均浮充控制)、充电温度补偿、智能放电终止电压控制,除此之外还应具备电池定期自动检测和电池漏液检测功能。另外还可以选择输入电压范围较宽的UPS,减少电池放电次数。通过上述几种技术,可大幅度延长电池寿命2~3年。

(3)智能UPS配电管理技术。原理是通过侦测UPS电池电压或者管理设备供电时间,实现对机房中不同等级负载的多次下电保护功能,减少电池投资、提高电池使用率。智能UPS配电管理技术主要有两种方案:包括软件实现方式及硬件实现方式。

在N+1型UPS冗余供电系统中,平时只有一套UPSl系统或UPS2系统向重要负载供电,显然不利于提高UPS供电系统的可靠性和可利用率。因此必须通过优质的、科学的自动转换配电柜LTM(SMS),使UPSl系统和UPS2系统平时均能各自带载工作,当某一路UPS系统出现故障时,LTM能零转换地将部分负载转换至另一路UPS系统并人工作。为了达到这样的目的,就需要在UPSl与UPS2系统之间增加一个负载同步控制器,使两个UPS系统达到同相(相位误差≤1。)输出,就可实现UPSl系统与UPS2系统两套优质电源向重要负载提供具有零转换的双电源输人特性的冗余供电系统。
     “负载同步控制器”的工作机理如下:它随时监视着UPSl系统与UPS2系统的逆变器输出的同步跟踪状态,当两路逆变电源的频率和相位在所规定的范围内(相位误差≤1。)时,它不会对UPSl系统与UPS2系统的工作状态产生任何影响。反之,当两套逆变器输出之间的相位超过允许范围时,对两套UPS的锁相同步进行及时调整。很明显,UPSl系统与UPS2系统都按常规办法,同时与交流输入电源同步跟踪是不可能的。
     (1)在“负载同步控制器”的管理控制下,假使UPS1系统优先同步跟踪市电电源,同时让UPS2系统去跟踪UPSl系统的逆变器电源,这时我们认为两套UPS系统是在同步跟踪状态下工作,它能安全、可靠地向它们各自所接的负载供电,同时具备随时执行安全同步切换操作的工作条件。例如,向负载供电的UPS2系统发生供电故障时,UPSl系统将会零转换的执行向UPS2负载的供电任务,并同时可对UPS2系统的输出供电通道进行脱机维修。
     (2)同理,UPS2系统也能优先跟踪市电电源,让UPSl系统去同步跟踪UPS2系统的逆变器电源。为了消除跟踪的瓶颈故障点,UPSl系统与UPS2系统应具有互为跟踪的同步功能。即谁优先跟踪市电,其逆变器输出必为另一套UPS跟踪。
     (3)三菱UPS由于采用双DSP全数字化电路设计,它的数字锁相电路设计比模拟锁相技术更加准确、更加稳定,也就是更容易达到同步锁相的目的。

(4)如果UPSl系统与UPS2系统的安装距离较远(例如>100m),同步跟踪控制线应采用光电耦合,光纤传输方法,不采用电信号的直接传输,并在设计施工方面采用更多措施,避免各种*带来的侵害。
     (5)如果把负载同步控制器制成一个附加设备,置于两套UPS系统之外,这样将会增加一个新的瓶颈故障点。因为所有UPS电路结构都存在锁相同步电路,负载同步控制器其功能就是执行谁优先谁控制的问题,因此其主要构成是控制信号线和同步功能线,若能将这些控制线都置于两套UPS内部,并采用互动同步功能,将会大大地提高其同步跟踪的可靠性。
     (6)同理,UPSl系统或UPS2系统的N+1型冗余并机系统,也同样存在同步跟踪问题,当然这些问题简单得多,并且早就解决了。
     (7)负载同步控制器的机理简单,实施也并不复杂,但“双输出总线”缺它不可,没有它的功能,就不可能实现“双总线输出”,其重要性可想而知了。

1)冲击性负载对科士达UPS电源的影响
对于计算机等非线性负载,其电流波形是周期性的非正弦波,峰值与有效值之比(峰值因数)可达到2~2.5,具体一定的冲击性。通常UPS的峰值因数为3:1,适合电脑等非线性负载在正常工作时的峰值因数要求。但当负载量增多,电流波形不规律地叠加后,科士达UPS电源等供电设备的电流容量还不足以满足负载的瞬间电流要求,会造成输出波形畸变。在这种情况下需要考虑增加供电设备的容量,从而提高电流提供能力。
另外计算机负载在开机时会产生超出平常多倍的大冲击电流,尤其是多台计算机同时开机的情况,通常超过科士达UPS电源的峰值因数承受能力,因此在选择UPS不间断电源容量时除了选择过载能力强的类型,还需要考虑负载波动及冲击余量,适当增大UPS容量以抵御负载的波动。
而对于某些特殊负载(如高速行打)而言,在起动或工作过程中会产生很强的冲击电流,负载容量瞬间升高数倍(有时高达6倍)。对于此种负载应在普通容量余量比例基础上进一步加大余量。正确的容量冗余对UPS的正常稳定工作及UPS的工作寿命影响很大,经常工作在满载或过载状态下的UPS系统故障的机会远远高于正确容量冗余的UPS电源。
 
2)系统扩容的需要
如果最初选择科士达UPS电源没有考虑余量,则一旦设备增加,超出UPS不间断电源的负荷能力,就必须重新购置一台新的UPS,不仅浪费了投资,而且可能受到场地摆放的限制、在布线安装工作方面也带来诸多不便。
所以在选择科士达UPS电源时,需要考虑2~3年内扩容的可能性,适当增加UPS功率容量,毕竟单位KVA容量UPS的价格,随着UPS容量的增大而下降,增出容量的成本比单买同样容量的UPS要节省许多。另外,尽量选用具有并机功能的机型,必要时可通过UPS并机成倍扩大输出容量。同时,在配置UPS的输入输出配电柜时,应将线缆及空开留有一定余量,方便日后扩容。

科士达UPS电源户外一体化基站平台高度集成了户外机柜和电源及其配套设备,可更好地满足铁塔公司快速建站需求,同时降低综合建站成本和运营费用,以出色的综合品质全面达到了各地铁塔公司户外基站项目建设的严格要求。 

比如,在内蒙铁塔公司户外基站项目建设中,客户针对户外建站产品提出了高可靠性、高可用性、集约化、模块化、节能环保、快速建站等一系列严格要求。同时,该项目应用的户外机柜将主要部署在交通不方便、日常维护困难的户外露天区域,恶劣的地理环境和气候条件,这也对产品的实际性能带来严峻的考验。值得肯定的是,即使面对内蒙铁塔户外基站项目严格的技术要求以及快速供货给供应商带来的诸多挑战,艾默生网络能源依然能够从激烈的招标竞争中成功胜出并获得第一份额,在很大程度上体现了艾默生网络能源强大的综合实力。 

在研发设计上,科士达UPS电源户外一体化基站平台充分考虑了配套设备和柜体之间的强耦合性和产品开发(硬件、软件、设计、测试)、生产制造、现场安装、运维等各个环节。为客户户外建站提供了完善的解决方案,充分满足了客户快速建站、降低综合建站成本和运营费用的需求。 

一直以来,科士达UPS电源凭借领先的技术优势、高端的研发平台,为通信行业打造了完善的多元化产品架构,而且以其优质的产品和强大的工程实施能力,能够及时、快速响应客户需求,在各地铁塔户外建站项目中不断打造经典案例。

定期检查各单元电池的端电压和内阻。对12V单元电池来说,在检查中如果发现各单元电池间的端电压差超过0.4V以上或电他的内阻超过80mΩ以上时,应该对各单元电池进行均衡充电,以恢复电池的内阻和消除各单元电池之间的端电压不平衡。均衡充电时充电电压取13.5~13.8V即可。经过良好均衡充电处理的电池绝大多数都可将其内阻恢复到30mΩ以下。

科士达UPS电源在运行过程中,由于各单元电池特性随时间变化而产生的上述不均衡性是不可能再依靠UPS电源内部的充电回路来消除的,所以对这种特性已发生明显不均衡性的电池组,若不及时采取脱机均充处理的话,其不均衡度就会越来越严重

重新浮充

科士达UPS电源停机10天以上,在重新开机之前,应在不加负载的条件下启动UPS电源以利用机内的充电子产品电回路重新对蓄电池浮充10~12h以上再带载运行。

科士达UPS电源长期处于浮充状态而没有放电过程,相当于处在“储存待用”状态。如果这种状态持续的时间过长,造成蓄电池因“储存过久”而失效报废,它主要表现为电池内阻增大,严重时内阻可达几Ω。

我们发现:在室温20℃下,存储1个月后,电池可供使用的容量为其额定值的97%左右,如果储存6个月不用,它的可使用容量变为额定容量的80%。如果储存温度升高,它的可使用容量还会降低。

因此建议用户最好每隔20°C个月有意地拔掉市电输入,让科士达UPS电源工作于由蓄电池向逆变器提供能量的状态。但这种操作不宜时间过长,在负载为额定输出的30%左右时,约放电10min即可。

减少深度放电

电他的使用寿命与它被放电的深度密切相关。科士达UPS电源所带的负载越轻,市电供电中断时,蓄电他的可供使用容量与其额定容量的比值越大,在此情况下,当科士达UPS电源因电池电压过低而自动关机时电池被放电的深度就比较深。

实际过程如何减少电池被深度放电的事情发生呢?方法很简单:当科士达UPS电源处于市电供电中断,改由蓄电池向逆变器供电状态时,绝大多数UPS电源都会以间隙4s左右响一次的周期性报警声,通知用户现在是由电池提供能量。当听到报警声变急促时,就说明电源已处于深度放电,应立即进行应急处理,关闭UPS电源。不是迫不得以,一般不要让科士达UPS电源一直工作到因电池电压过低而自动关机才结束。

利用供电高峰充电

对于科士达UPS电源长期处于市电低电压供电或频繁停电的用户来说,为防止电池因长期充电不足而过早损坏,应充分利用供电高峰(如深夜时间)对电池充电以保证电池在每次放电之后有足够的充电时间。一般电池被深度放电后,再充电至额定容量的90%至少需要10~12h左右。注意充电器的选用

科士达UPS电源用的免维护密封电池不能用可控硅式的“快速充电器”进行充电。这是因为这种充电器会造成蓄电池同时处于既“瞬时过流充电”又“瞬时过压充电的恶劣充电状态。这种状态会使电池可供使用容量大大下降,严重时会使蓄电池报废。在采用恒压截止型充电回路的科士达UPS电源时,注意不要将电池电压过低保护工作点调得过低,否则,在它充电初期容易产生过流充电。

当然,最好选用既具有恒流,又有恒压的充电器对其进行充电。

保证电源环境温度

电池可供使用的容量与环境温度密切相关。一般情况下,电池的性能参数都是室温为20℃条件下标定的,当温度低于20℃时,蓄电他的可供使用容量将会减少,而温度高于20℃时,其可供使用的容量会略有增加。不同厂家不同型号的电池受温度影响的程度不同。据统计,在-20℃时,蓄电池可供使用容量只能达到标称容量的60%左右。可见温度的影响不可忽视。

当然,要延长电池组的使用寿命不但在维护使用上要注意,而且在选择时就应充分考虑负载特性(电阻性、电感性、电容性)及大小。不要长期使电池处于过度轻载运行,以免电池放电电流过小导致电池报废。

环保,高效的,UPS电源使用政策 是UPS不间断电源发展的趋势


联系我们

联系人:王培

手机:15210159464

电话:400-7655-808

邮箱:15210159464@126.com

地址: 北京市大兴区旧桥路25号院3号楼2层205